پیغام مدیر :
با سلام خدمت شما بازديدكننده گرامي ، خوش آمدید به سایت من . لطفا براي هرچه بهتر شدن مطالب اين وب سایت ، ما را از نظرات و پيشنهادات خود آگاه سازيد و به ما را در بهتر شدن كيفيت مطالب ياري کنید.
بازدید : 272
نویسنده : جواد دلاکان

استیل 630- در بیشتر صنایع فولادی مورد نیاز است. که علاوه بر داشتن خاصیت ضدزنگی در برابر دماهای بالا نیز استحکام خوبی از خود نشان میدهد. استنلس استیل 17-4ph از این ویژگی ها برخوردار است. و به صورت سیم جوش و میلگرد تولید و به بازار عرضه می شود.

استیل 630- استیل 17-4ph - فولاد 17-4ph -فولاد 630- فولاد 1.4542

استیل 630

مقاومت به خوردگی این آلیاژ با استیل 304 قابل مقایسه بوده و از سری 400 نیز بیشتر است. همچنین تا دمای 600 درجه فارنهایت (316 درجه سانتیگراد) مقاوم است.

میلگرد استیل 17-4ph یا میلگرد استیل 630 در برابر حرارت بالا، عوامل جوی و گازها مقاومت بالایی دارد. و با توجه به این ویژگی ها در صنایع نفت و گاز، صنایع غذایی، هوا فضا و … استفاده می شود. همچنین قیمت این استیل از گرید 304 و 430 بالاتر است.

معرفی استل 630 یا استیل 17-4ph

استیل 17-4ph از دسته استنلس استیل می باشد. که در استاندارد DIN با نام فولاد 1.4542 شناخته میشود. و در میان فولادها با مشخصه X5CrNCuNb16-4 معروف است. در صنایع مختلف، به فولادها و قطعاتی نیاز است که مقاومت بالایی در دماهای بالا از خود نشان دهند. که بر همین اساس استیل 17-4ph تولید و به بازار عرضه شد. ترکیب شیمیایی این نوع فولاد آلیاژی 0.07% کربن، 0.7% سیلیسیوم، 1.5% منگنز، 0.04% فسفر، 17-15% کروم، 0.6 مولیبدن، 5-3% نیکل و 3-5% مس است.

خواص مکانیکی استیل 630 به شرح زیر می باشد.

مقاومت کششی: 1070 مگاپاسکال

سختی برینل: 360 HB

کاربرد استیل 630

همانگونه که بیان شد از استیل 630 در صنایع گسترده ای به دلیل مقاومت آن در برابر خوردگی. دما و فشار بالا استفاده می شود که عبارتند از:

ساخت قطعات و سازه های هوا فضا

تجهیزات مهندسی

پیچ و چرخ دهنده ها

سوپاپ های توربین

صنایع غذایی

قطعات مکانیکی

تجهیزات مربوط به کارخانه تولید کاغذ

در صنعت پالایشگاه، نفت و گاز

اثر عملیات حرارتی پیرسازی بر رفتار سایش لغزشی فولاد زنگ نزن 17-4PH

چکیده فولاد 630 یک فولاد ضد زنگ رسوب سختی شونده مارتنزیتی کم کربن شامل نیکل و مس می باشد. که توسط عملیات پیرسازی با تشکیل رسوبات ریز فاز ثانویه از محلول فوق اشباع قابل سخت شدن است. این فولاد به دلیل ترکیب خوبی از استحکام بالا، چقرمگی، مقاومت به خوردگی و سایش. و همچنین جوش پذیری، کاربردهای گسترده ای در صنایع هسته ای، شیمیایی، نفت و گاز، هوافضا و… دارد.

 

در این تحقیق، این آلیاژ ابتدا تحت عملیات آنیل انحلالی در دمای بالا قرار گرفت. و پس از آب دادن در هوا در دماهای 480،550 و 620 درجه سانتیگراد برای زمان های مشخص، در معرض پیرسازی قرار گرفت. بررسی های میکروساختاری و سختی سنجی صورت پذیرفت. و سپس خصوصیات سایش لغزشی نمونه ها با استفاده از دستگاه سایش Pin-On-Disk. تحت شرایط خشک در دمای اتاق بر روی یک سطح فولادی سخت در بار ثابت 15 نیوتن. و سرعت m/s 0/5 و طی مصافت لغزشی تا 4000 متر مورد ارزیابی قرار گرفت.

با استفاده از میکروسکوپ الکترونی روبشی، مکانیزم های سایش مطالعه و شناسایی گردیدند. نتایج آزمایشات و بررسی ها نشان داد. که نمونه های پیرسازی شده در دمای 480 درجه سانتیگراد نرخ سایش کمتری در مقایسه با سایر نمونه های از خود نشان می دهند.

مقدمه

فولادهای زنگ نزن رسوب سختی شونده بدلیل خصوصیات عملیات حرارتی آنها. و همچنین ترکیبی از استحکام بالا، اعوجاج کم، مقاومت به خوردگی و سایش خوب، جوش پذیری عالی و سختی نسبتاً بالا. به طور گسترده در مصارف مختلف و در بسیاری از تجهیزات مورد استفاده واقع شدند. این فولادها با توجه به ترکیب شیمیایی و فازهای موجود در ریزساختار تقسیم بندی می شوند. یکی از رایجترین و مهمترین آلیاژ رسوب سختی شونده در این گروه فولاد (AISI 630) 17-4PHاست. که یک فولاد زنگ نزن مارتنزیتی شامل 5-3% وزنی مس می باشد.

 

که توسط رسوبات نانومتری غنی از مس توزیع شده در زمینه مارتنزیت تیغه ای شکل تمپر شده استحکام یافته است. تشکیل مقدار کمی دلتا فریت نیز در این فولاد گزارش شده است. در شرایط آنیل انحلالی با وجود ساختار مارتنزیتی سختی بالایی بدست نمی آید. پیرسازی در محدوده دمایی 420-620 درجه سانتی گراد. به دلیل تشکیل فاز غنی از مس منجر به رسوب سختی و افزایش در سختی و استحکام می گردد.

 

اگر دمای پیرسازی به بالاتر از 600 درجه سانتیگراد افزایش یابد. تشکیل رسوبات غیر همدوس مس در زمینه و نیز استحاله مقداری از مارتنزیت به آستنیت در طول تیغه های مارتنزیت رخ می دهد. این فولاد استیل، به دلیل داشتن مجموعه خواص مطلوب که در ابتدا بیان گردید. در کاربردهای بسیاری از جمله قطعات ساختمانی هواپیما، تیغه توربین بخار، تأسیسات راکتورهای هسته ای و نیز محورهای کشتی و پمپ استفاده می گردد. اگرچه، گسترش کاربردی آن به دلیل سختی نسبتاً کم و خواص تریبولوژیکی ضعیف محدود می شود.

 

سایش عبارت است از کاهش تدریجی ماده از سطوح جامدی که در تماس با هم هستند. و حرکت نسبی دارند. و منجر به آسیب و تخریب سطح می گردد. که بستگی به شرایط تماسی بین سطوح از جمله فشار، دمای تماسی، ضریب اصطکاک و خواص ماده دارد. یکی از فاکتورهای کلیدی و مقاومت به سایش آلیاژهای فلزی، خصوصیات ریزساختاری است. که خواص مکانیکی مانند سختی بوسیله آن کنترل می گردد.

از آنجا که موضوع سایش در استیل 630 از اهمیت خاصی بر خوردار است. و همچنین مطالعات بسیار اندکی در این زمینه انجام پذیرفته است. لذا در این تحقیق، مقاومت به سایش لغزشی فولاد 17-4PH در شرایط مختلف عملیات حرارتی و ریزساختاری. و با استفاده از دستگاه سایشی Pin-On-Disk بر روی یک سطح فولادی سخت مورد ارزیابی قرار گرفته است.

محمدرضا توکلی شوشتری، خلیل رنجبر، محمد هادی مؤید

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام

 


:: برچسب‌ها: استیل 630 , فولاد 17 , 4PH , فولاد 630 , فولاد 4542 , استیل 17-4PH , استیل AISI 630 ,



بازدید : 178
نویسنده : جواد دلاکان

میلگرد 7131-فولاد 7131-تغییرات خواص مکانیکی و مغناطیسی کاربیدهای سمانته با افزایش زمان سینتر

میلگرد 7131-فولاد سمانته-تغییرات خواص مکانیکی و مغناطیسی کاربیدهای سمانته

میلگرد 7131

میلگرد سمانته-فولاد 7131 – فولاد 5920- گرد ۱/۷۱۳۱ – ۱/۵۹۲۰-فولاد سمانته

 کاربرد میلگرد سمانته: مانند چرخ دنده های انواع اتومبیل و تراکتور و ماشین های سنگین. ، پیچ دنده گرد ، رینگ ها ، اجزا فرمان ، بلبرینگ ها و … . استفاده می گردد.

میلگرد 7131

فولاد های سمانته به دو دسته تقسیم می شوند: سمانته های نیکل دار و سمانته های غیر نیکل دار،.  که فولاد 1/7131 از جمله فولاد های سمانته غیر نیکل دار می باشد.

در واقع اصطلاح سمانته یا سمانتاسیون به معنی سختکاری سطحی می باشد. که در واقع نوعی عملیات حرارتی هستند که سطح نمونه سخت می گردد .و مغز نمونه بدون تاثیر سختی می ماند. که در واقع می گوییم سطح سخت و مغز چقرمه (نرم) است. این فولاد ترکیب شیمیایی 16 MnCR5 که در دمای 880-980 درجه سانتی گراد کربن دهی می گردد.  که در دمای780-820 سطح آن سخت می شود .و در دمای 150-200 درجه ی سانتی گراد، تمپر می شود. و سطح آن ماکزیمم (البته سایز های ریز) به 47HRC می رسد. از موارد کاربرد آن می توان به چرخ های دندانه دار و اجزاء فرمان اشاره نمود.

 

درصد کربن فولاد سمانته پایین و حداکثر3/.است.فولادهای سمانتاسیون علاوه بر کربن دارای عناصر آلیاژی دیگر نظیر: منگنز، سیلیسیم ، کرُم ، مولیبدن و نیکل می باشند.

و تحت عملیات حرارتی کربن دهی تولید می شوند . به دلیل درصد پایین کربن بعد از عملیات حرارتی سخت کاری سختی بالایی نخواهند داشت.اگر سطح فولاد با عملیات کربن دهی پرکربن شود سختی سطح بالا می رود .

حداکثر نفوذ کربن 2 میلیمتر زیر سطح خواهد بود. فولادهای سمانته سطحی سخت و مغزی نرم و چقرمه و مقاومت به سایش بالایی خواهند .داشت و در عین حال مقاومت به ضربه بالایی نیز دارند.فولادهای سمانته به دو دسته با استانداردهای مختلف تقسیم می شوند .

میلگرد 7131

تغییرات خواص مکانیکی و مغناطیسی کاربیدهای سمانته با افزایش زمان سینتر

تولید ابزارهای برشی امروزی، بدون استفاده از کاربیدهای سمانته به عنوان ماده اولیه ممکن و میسر نمی باشد. نیاز صنایع به ابزارهای برشی جدید با توانایی و کیفیت بالا جهت حصول نتایج اقتصادی بهتر. منجر به بهره گیری از فرآیندها و روش های پیشرفته مدرن در تولید و یا بهبود آنها شده است. در این پژوهش تلاش گردید با افزایش زمان فرآیند سینتر و براساس روش سینتر مجدد. خواص گوناگونی را جهت حصول دامنه های کاربردی متنوع بدست آورد. جهت بررسی موضوع، نمونه ای از استاندارد K با ترکیب (%92wt)WC. و (%2tw)TaC، و (%5wt)Co که برای ماشینکاری چدن ها بکار برده می شود.

 

و همچنین نمونه ای دیگر از خانواده استاندارد P با ترکیب شیمیایی (%80wt)WC، و (%5wt)Tac ،و (%5wt)TiC و (%10wt)Co که برای ماشینکاری فولادها مناسب می باشد، انتخاب شدند. ساختار نمونه ها و مواد اولیه آنها توسط میکروسکوپ نوری و میکروسکوپ الکترونی وربشی مورد بررسی قرار گرفت. نمونه ها در زمان های 1 تا 10 ساعت و با یک شیب حرارتی یکنواخت تا درجه حرارت 5°± 1490 درون کروه و تحت خلاء نسبی 10 به توان -2 torr سینتر شدند. در ادامه نمونه های سینتر شده جهت بررسی های فازی تحت آنالیز XRD قرار گرفتند. نتایج این آنالیز به کمک نرم افزار نشان داد که نمونه تهیه شده شامل فازهای عمده مطلوب می باشد.

میلگرد 7131

رفتار خواص مکانیکی با سنجش تغییرات سختی از 1698HV30 تا 1674HV30. برای نمونه های نوع K و از 1389HV30 تا 1347HV30 برای نمونه های نوع P کاهش یافت. که علت آن کاهش عیوب کریستالی و رشد دانه بود. استحکام گسیختگی عرض نمونه ها مورد بررسی قرار گرفت. که با افزایش زمان سینتر تا 4 ساعت به علت. از بین رفتن مراکز جوانه زنی ترک این پارامتر برای نمونه K به 2991MPa. و برای نمونه نوع P به 2710MPa افزایش داشت.

 

و پس از آن با افزایش زمان سینتر تا 10 ساعت. به علت. غالب شدن پدیده رشد دانه این مقادیر برای نمونه های نوع K و P. به ترتیب به 2610MPa و 2250MPa کاهش یافتند. این رفتار با سنجش اندازه گیری اشباع مغناطیسی و نیروی پسماند زدای مغناطیسی بیانگر تغییراتی در ریزساختار اولیه. و هم جهت با تغییرات تافنس می باشد. که این امر منجر به بهبود خواص براده برداری ابزار برای قطعات ریختگی می گردد. بررسی دانسیته نمونه ها نیز تغییرات محسوسی را نشان نمی داد.

 

کاربیدهای سمانته محدوده ای از آلیاژهای خیلی سخت، دیرگداز و مقاوم به سایش را تشکیل می دهند. که به دلیل خواص منحصر به فرد، دارای کاربرد بسیار وسیع و گسترده ای در ابزارهای برشی هستند. این ترکیبات اصولاً از تجمع ذرات کاربیدهای فلزی دیرگداز با سختی بالا. در یک زمینه اتصال دهنده فلزی تشکیل می شوند. حصول خواص مهمی مانند حفظ استحکام و سختی در درجه حرارت های بالای ماشینکاری. تافنس مناسب و مقاومت به سایش زیاد. از عوامل خواسته شده و مورد نیاز یک ابزار برشی مطلوب می باشند.

میلگرد 7131

یکی از معمولی ترین و پر مصرف ترین ابزارها، کاربیدهای سمانته بر پایه کاربید تنگستن می باشد. که به روش متالورژی پودر بدست می آید. این ترکیب به علت سختی بالا دارای مقاومت به سایش خوبی بود. ضمن آن که ضریب انبساط حرارتی پایین آن قابل توجه می باشد.خاصیت تر شوندگی خوب این کاربید توسط کبالت سبب شده تا محصولی با چقرمگی بهبود یافته به دست آید. به علت وجود این خاصیت عالی در کبالت نسبت به سایر فلزات، چسبندگی و خواص مکانیکی خوبی وجود خواهد داشت. فلز کبالت گران، کمیاب و دارای منابع محدود می باشد.

 

ولی خواصی که این عنصر در حین عملیات تولید کاربید سمانته به عنوان فاز مایع اولیه می نماید. باعث محدودیت در جایگزینی آن شده است. در سالهای اخیر تحقیقات گسترده ای به منظور بهبود خواص مکانیکی و مغناطیسی با استفاده از مواد و ترکیبات جدید. و یا انجام تغییر در پارامترهای تولید صورت گرفته است. تا اینکه افزایش طول عمر باعث حصول صرفه اقتصادی در فرآیندهای ماشینکاری گردند.

 

ریزش و چسبندگی براده ها به ابزار و یا حتی قطعه کار در اثر ایجاد خاصیت مغناطیسی. بین براده و ابزار از آن جهت اهمیت دارد. که منطقه براده برداری ابزار همواره تمیز و عاری از مانع بماند. این امر باعث عمر طولانی تر ابزار شده و همچنین کیفیت براده برداری را در حد مطلوب نگه خواهد داشت. بر این اساس، در این تحقیق اثر زمان سینتر بر اندازه دانه، سختی، چقرمگی. اشباع مغناطیسی و نیروی پسماند زدای مغناطیسی مورد بررسی قرار گرفته است.

میلگرد 7131

طبق تعریف و بطور قراردادی، مواد سخت جامداتی با سختی 10 – 8 در مقیاس موس هستند. معمولاً مواد سخت متعارف به صورت ترکیباتی با پیوندهای فلزی نظیر (TiN و یا WC). یونی (Al2O3)، یا کووالانسی نظیر (الماس ، Si3N4) تقسیم بندی می شوند. اغلب عناصر تشکیل کاربیدها و نیتریدهای گوناگون با ساختار فیزیکی – شیمیایی و خواص کاربردی متفاوت می دهند. از میان این عناصر فقط آنهایی که بصورت بین نشین و کووالانت ترکیبات مذکور را ایجاد می نمایند. دارای مشخصه های دیرگدازی و سختی بالا می باشند.

 

این چنین موادی شامل کاربیدها و نیتریدهای نه عنصر از گروه های چهار، پنج و شش جدول تناوبی می شوند. که در دوره های چهارم، پنجم و ششم قرار گرفته اند. همچنین کاربیدها و نیتریدهای بور و سیلیسیم و نیترید آلومینیوم نیز دارای چنین خاصیتی می باشند. از این بابت است که این کاربیدها و نیتریدها در ساخت ابزارهای برشی استفاده فراوان دارند.

کاربیدهای مورد بحث دارای سختی بالا، مدول الاستیک زیاد. نقطه ذوب بالا، خصوصیات فلزی خوب (هدایت حرارتی و هدایت الکتریکی خوب). و مقاومت زیاد به واکنش شیمیایی می باشند و تمایل زیادی به آلیاژسازی با ترکیباتی از آهن را دارند. برخی از مشخصه های فیزیکی و مکانیکی چند کاربید پر مصرف در این صنعت در جدول (1) آورده شده است.

میلگرد 7131

کاربید تنگستن به دلیل برخی از ویژگی ها، بخش قابل توجهی از ذرات سخت را در ساخت کاربیدهای سمانته به عنوان ابزار براده برداری به خود اختصاص می دهند. ساختمان کریستالی کاربید تنگستن هگزاگونال می باشد. کاربیدهای دیگر بطور قابل ملاحظه ای در کاربید تنگستن قابلیت حل شدن ندارند. ولی ترکیب های کاربید تیتانیم. کاربید تنتال و کاربید نیوبیم به نسبت قابل توجهی کاربید تنگستن را درون خود حل می نمایند. ترکیب شیمیایی، اندازه و شکل دانه های فازهای گوناگون و فرآیند عملیاتی آنها. خواص یک کاربید سمانته را کنترل می کنند. مشخصات و خصوصیات کلی به اندازه ذرات اولیه، انرژی و زمان عملیات آسیاب و شرایط فرآیند سینتر مانند درجه حرارت، زمان و اتمسفر محیط وابسته هستند.

 

کبالت با نسبت 5 تا 20 درصد وزنی با مجموعه ای از کاربیدهای اشاره شده. تشکیل دهنده این خانواده از سرمت ها می باشد. فلز مذکور دارای ویژگی هایی از قبیل قابلیت ترکنندگی کاربید توسط فاز مذاب فلزی بوجود آمده، عدم تشکیل کاربید. پایین بودن حلالیت کاربید در فاز مذاب فلزی، مقاومت بالای اکسیداسیون فلزی. و انطباق ضرایب انبساط حرارتی فلز و کاربید می باشد. محصول به دست آمده دارای خواص مکانیکی خوب، هدایت حرارتی بالا، نقطه ذوب بالا. نداشتن استحاله فازی در شرایط کاری تعریف شده، عدم واکنش شیمیایی. مقاومت در برابر اکسیداسیون و تغییر خواص براساس نیاز می باشند.

 

میلگرد 7131

فولاد 7131-فولاد سمانته-میلگرد سمانته-تغییرات خواص مکانیکی و مغناطیسی کاربیدهای سمانته

هدف از انجام تحقیق حاضر گسترش دامنه کاربرد ابزارهای نوع K و P. برای براده برداری از چدن و فولاد با محدوده سختی وسیع تر بود.

نحوه آزمایش

فرآیند بکار گرفته شده در تهیه این ابزارها متالورژی پودر می باشد. مواد اولیه به شکل پودر و مطابق با جدول (2) و مورفولوژی نشان داده شده. در شکل (1) از شرکت های معتبر در صنعت تهیه شده اند.

 

فولاد 7131-فولاد سمانته-میلگرد سمانته-تغییرات خواص مکانیکی و مغناطیسی کاربیدهای سمانته
فولاد 7131-فولاد سمانته-میلگرد سمانته-تغییرات خواص مکانیکی و مغناطیسی کاربیدهای سمانتهشکل 1. الف) پودر کاربید تنگستن با اندازه ذره 1 میکرون، ب) پودر کاربید تنتال 90 درصد با اندازه ذره 1/5 میکرون، ج) پودر کبالت با اندازه ذره 1/5 میکرون، د) پودر کاربید تنگستن – تیتانیوم با اندازه ذره 2 میکرون

برای حصول نتیجه گیری بهتر تلاش شده است. تا سه پارامتر درصد خلوص، اندازه ذره پودر و مورفولوژی ذارت تا حد ممکن به هم نزدیک باشند. نمونه K با ترکیب شیمیایی (%92wt)WC، و (%2wt)TaC و (%6wt)Co. و نمونه P با ترکیب شیمیایی (%80wt)WC و (%5wt)TaC و (%5wt)TiC و (%10wt)Co. به تعداد 10 عدد از هر یک در برنامه تهیه نمونه قرار داده شد. مورفولوژی پودرها نیز پارامتری متأثر از فرآیند ساخت آنها می باشد. همانطور که ملاحظه می شود. ذرات پودر به لحاظ اندازه، شکل و میزان پراکندگی از یکنواختی قابل ملاحظه ای برخوردار می باشند.

 

مواد اولیه در یک آسیاب افقی به مدت 12 ساعت. توسط گلوله هایی به قطر 6 تا 8 میلی متر از جنس کاربید سمانته. با سرعت دورانی 250rpm و نسبت گلوله به پودر 3 به 1 آسیاب شدند. مخلوط پودر تهیه شده. توسط یک پرس مکانیکی از نوع هیدرولیکی با مکانیزم نیروی دو جهته درون قالبی به شکل مکعب مستطیل. و به ابعاد 23/5 * 7/4*6/2 میلیمتر با فشار 400 مگاپاسکال پرس گردیدند. هر 10 نمونه پرس شده با شرایط یکسان تهیه شدند تا در بررسی تأثیر زمان تعداد متغیرها کاهش پیدا کند. فرآیند سینتر توسط یک کوره الکتریکی و در دمای 5± 1490 درجه سانتی گراد. در محیط خلاء نسبی 10 به توان منفی 2 torr و زمان متوالی 1 تا 10 ساعت انجام پذیرفت. و سپس نمونه ها تحت اتمسفر گاز هلیوم با خلوص 99/99% بصورت کنترل شده تا دمای محیط خنک شدند.

میلگرد 7131

جهت ایجاد خلاء نسبی در کوره سینتر از ذوب پمپ Rorary و Mechanical Booster بطور سری استفاده شد. سپس نمونه ها قبل از انجام آزمایش های مورد نظر. توسط یک دستگاه سنگ مغناطیسی تخت به ابعاد نهایی 20*6*5 میلیمتر سنگ زنی شدند. انجام آزمون ها با تست های غیر مخرب شروع و با تست های تخریبی خاتمه یافت. بنابراین ابتدا آزمون های تعیین دانسیته، اندازه گیری اشباع مغناطیسی. و اندازه نیروی پسماند زدای مغناطیسی انجام پذیرفت. و پس از آن آزمون های اندازه گیری گسیختگی عرضی (TRS). سختی سنجی و متالوگرافی انجام شد.

 

دانسیته نمونه ها براساس استاندارد ISO 3369 اندازه گیری گردید. در این آزمون از ترازوی دیجیتالی آزمایشگاهی مدل GR300 شاخت شرکت AND ژاپن با دقت 0.1mg استفاده گردید. میزان اشباع مغناطیسی و نیروی پسماندزدای مغناطیسی به ترتیب مطابق با استانداردهای ASTM 342 و ISO3326 اندازه گیری شد. دستگاه های مورد استفاده شامل SETARAM و FORSTER بودند. آزمون مخرب استحکام گسیختگی عرضی (TRS) مطابق با اساندارد ISO 3327 و با دستگاه PHILIPS انجام گرفت. به کمک دستگاه سختی سنج، میزان سختی نمونه ها در مقیاس HV30 مطابق با استاندارد ISO 3878. توسط دستگاه WOLPERT اندازه گیری گردید. همچنین نمونه ها مورد تجزیه و تحلیل متالوگرافی قرار گرفتند. تا ساختار میکروسکوپی آنها و همچنین وضعیت تخلخل بر اساس استاندارد ISO 4505 مورد بررسی و مقایسه قرار گیرند.

 

این کار به کمک دستگاه میکروسکوپ نوری ZEISS انجام پذیرفت. آزمون دیگری که بر روی نمونه مربوط به زمان 10 ساعت انجام گردید. آزمون پراش اشعه ایکس بود که بوسیله دستگاه تفرق اشعه ایکس PHILIPS مدل PW3710. با ولتاژ 40KV و جریان 30mA، مجهز به تیوب آند کبالتی (λ=1.789010°A)، Size= 0.02 Step و0.55 = (Time/step). و محدوده زاویه تابش 120 – 5 درجه انجام پذیرفت.

نتایج و بحث

نمونه های مربوط به ساعت دهم عملیات سینترینگ برای انجام آنالیز فازی پراش اشعه ایکس (XRD) انتخاب شدند. این انتخاب بدان جهت انجام پذیرفت. تا از عدم بوجود آمدن فازهای نامطلوب ناشی از ترکیبات جدید. و همچنین از تحت کنترل بودن اتمسفر کوره اطمینان حاصل شود. همانطور که از شکل (2) می توان ملاحظه نمود. در نمودار تفرق اشعه ایکس فازهای ردیابی شده WC،TaC و TiC می باشند. و پیک مربوط به کبالت مشاهده نمی شود. که دلیل آنرا می توان به شدت جذب پایین این عنصر نسبت داد. در جدول (3) ضریب جذبی ترکیبات مورد نظر جهت مقایسه ارائه شده است. همچنین حداکثر شدت پیک مربوط به ترکیب WC است. که فاز اصلی و فاز فرعی را ترکیب TaC تشکیل می دهد.

 

علاوه بر این در نمودارهای شکل (2) ناخالصی ها و ترکیبات نامطلوب نظیر فاز η. در خانواده کاربیدهای سمانته نیز مشاهده نمی شود. این عدم مشاهده مؤید ثبات ترکیب شیمیایی محصول در زمان و شرایط سینترینگ و کنترل اتمسفر کوره می باشد. در رابطه با پیک های مربوط به ترکیب TaC در مقایسه با کارت مرجع این ترکیب مقداری جابجایی پیک. به سمت زوایای کوچک تر را شاهد هستیم. که علت آن انحلال جزئی کاربید تنگستن در کاربید تنتالیم می باشد. با انجام این انحلال پارامتر شبکه کاربید تنتالیم بزرگ تر شده که در نتیجه طبق قانون براگ یعنی λ=2dSinθ. محل پیک مربوطه به زوایای کوچکتر جابجا می شود.

 

در شکل (3) ریزساختار نمونه متالوگرافی شده نشان داده شده است. نمونه ها با محلول Murakami اچ شده اند. مطابق این شکل نمونه دارای ذرات کاربید تنگستن و تنتالیم می باشد. که بوسیله زمینه کبالتی در کنار یکدیگر قرار گرفته اند.

شکل 3. ریزساختار نمونه های سینتر شده الف) نمونه K یک ساعت سینتر شده. ب) نمونه K ده ساعت سینتر شده ج) نمونه P یک ساعت سینتر شده. د) نمونه P ده ساعت سینتر شده. (دانه های آبی رنگ کاربید تنگستن، زرد رنگ کاربید تنتالیم و کاربید تیتانیوم و سفید رنگ زمینه کبالتی می باشند. بزرگنمایی :X1500)

میلگرد 7131

همانطور که ملاحظه می شود علی رغم زمان ده ساعته سینترینگ ذرات کاربید مورفولوژی خود را حفظ نموده. و همچنین این ذرات بخوبی توسط فلز کبالت به یکدیگر متصل شده اند. که نشان از قابلیت ترشوندگی بالای ذرات کاربیدی توسط مذاب این فلز به هنگام انجام سینترینگ در فاز مایع دارد. در بررسی به عمل آمده وجود تخلخل مشاهده نگردید. همانطور که مشاهده ممی شود، با افزایش زمان سینتر، رشد دانه ها اجتناب ناپذیر می باشد.

 

اندازه گیری دانسیته جهت تشخیص چگونگی و کیفیت فرآیند سینتر یکی از روش های غیر مخرب و سریع می باشد. همچنین ثبات دانسیته نشان از عدم هر گونه تغییر شیمیایی و یا فازی در ساختار می باشد. وجود فازهای نامطلوب در این گروه از کاربیدهای سمانته مانند کربن آزاد و تخلخل. می تواند نوسان چشمگیری را در دانسیته بوجود آورد. بنابراین با توجه به شکل (4) که رفتار با ثبات و بدون نوسانی را برای دانسیته نشان می دهد. می توان این نتیجه را گرفت که ساختار نمونه ها بدون تغییر بوده. که البته بررسی ساختاری نیز این مطلب را تایید می نماید.

 

اندازه گیری سختی نمونه ها نشان داده است که با افزایش زمان. میزان سختی با یک شیب ملایم کاهش یافته و به تدریج از نرخ کاهش کاسته می شود. در کاربیدهای سمانته رشد دانه بطور قابل توجهی بر نتایج نهایی تأثیر گذار می باشد. کاهش عیوب کریستالی در اثر اعمال این فرآیند را نیز نباید از نظر دور داشت. این رفتار را در شکل (5) می توان ملاحظه نمود.

 

از آنجاییکه اندازه گیری استحکام کششی کاربیدهای سمانته نتایج قابل اطمینانی را ارایه نمی نماید. از نتایج آزمون گسیختگی عرضی (TRS) در این مطالعه استفاده شده است. میزان تغییرات استحکام گسیختگی عرضی در نمونه ها بر خلاف سختی می باشد. شکل (6) شیب مثبتی را تا زمان چهار ساعت سینترینگ برای این پارامتر نشان می دهد.

 

این پدیده را می توان به مکانیزم کاهش عیوب بوجود آمده. حین فرآیند (سنتز پودرها، آسیاب مخلوط پودری و پرس نمونه ها). در اثر دمای بالای سینتر و داشتن زمان کافی در مراحل مختلف این فرآیند نسبت داد. که در نتیجه آن مراکز جوانه زنی و رشد ترک در این ماده ترد تا حد زیادی از بین رفته. و متعاقب آن افزایش استحکام شکست مشاهده می شود. همچنین رشد دانه ها در اثر اعمال حرارت در زمان باندازه کافی برای انجام فرآیند سینتر. را نباید از نظر دور داشت. پس از گذر از ساعت چهارم فرآیند سینترینگ، افت استحکام مشهود می باشد. علت این پدیده را می توان غالب شدن مکانیزم رشد دانه به مکانیزم کاهش عیوب ساختاری نسبت داد.

میلگرد 7131

در شکل (7) تغییرات میزان اشباع مغناطیسی نسبت به زمان صرف شده برای سینتر ملاحظه می شود. از آنجاییکه فلز زمینه کبالت می باشد و این فلز به لحاظ خواص فیزیکی فرو مغناطیس محسوب می شود. لذا میزان اشباع مغناطیسی ترکیب مورد نظر به شدت به میزان وجود آن در ترکیب اولیه و زمینه بستگی دارد. فرومغناطیس بودن کبالت در این مواد امکان انجام تست های غیر مخرب. را برای بررسی کیفی چنین کامپوزیت هایی فراهم می آورد. با افزایش زمان سینتر درصدی از این فلز در فاز کاربید بصورت محلول در آمده. و از میزان حد اشباع مغناطیسی محصول کاسته می شود.

 

از طرف دیگر با افزایش زمان سینتر شاهد رشد دانه ها نیز هستیم. که خود سبب کاهش میدان مغناطیسی باقیمانده در نمونه ها می شود. این روند در شرایط دمایی ذکر شده تا حدود سه ساعت انجام فرآیند سینتر. افت قابل توجهی از خود نشان می دهد. و پس از آن تا ساعت هفتم تقریباً بدون تغییر باقی می ماند.

 

پس از به اشباع رسیدن نمونه ها با قرار دادن آنها در میدان مغناطیسی. شدت میدان لازم برای از بین بردن کامل میدان مغناطیسی باقیمانده در نمونه ها تحت بررسی قرار گرفت شکل (8). مشخص شد با افزایش زمان سینتر تا سه ساعت میزان افت در میدان مغناطیسی لازم. برای از بین بردن میدان مغناطیسی آهسته می شود. این پدیده را می توان به رشد دانه ها در اثر افزایش زمان سینتر نسبت داد. میزان تغییرات مشخصه های اشباع مغناطیسی و واماندگی مغناطیسی ترکیب مورد بحث. تا ساعت سوم سینترینگ افت نسبی داشته. و از آن به بعد تا حدود ساعت ششم از تغییرات بسیار آهسته ای برخوردار می باشد. ولی احتمالا پس از زمان های بررسی شده، ایجاد فازهای نامطلوب در زمینه اجتناب ناپذیر بوده. و تغییرات نامطلوب کلیه خواص مورد بررسی مشاهده خواهد شد.

فولاد 7131-فولاد سمانته-میلگرد سمانته-تغییرات خواص مکانیکی و مغناطیسی کاربیدهای سمانته

نتیجه گیری

1- با افزایش زمان سینتر انحلال کاربید تنگستن در کاربیدهای دیگر مانند تنتالیم یا تیتانیوم صورت پذیرفت.

2. در فرآیند بکار گرفته شده، دانسیته هر دو محصول بواسطه بوجود نیامدن فازهای جدید تحت کنترل قرار داشت.

3. رشد دانه ها با افزایش زمان سینتر در هر دو نوع محصول بطور نسبی مشهود بود.

4. افزایش زمان سینتر موجب کاهش سختی در هر دو نوع محصول با روندی مشابه و بواسطه افزایش اندازه دانه شد.

 

5. اعمال زمان سینتر از چهار تا پنج ساعت بر روی هر دو نوع محصول موجب افزایش استحکام گسیختگی عرضی. بواسطه کم شدن مراکز جوانه زنی ترک شد.

6. کاهش مشخصه های مغناطیسی یعنی میزان اشباع مغناطیسی و نیروی پسماند زدایی مغناطیسی. با افزایش زمان سینتر برای هر دو نع محصول مشاهده گردید.

7. با توجه به نتایج بدست آمده زمان سینتر مطلوب برای هر دو ترکیب. تحت شرایط مطرح شده جهت استفاده در شرایط سخت ماشینکاری، حدود سه ساعت توصیه می گردد.

فرهاد ادیب پور، حسن کربالایی اکبر و سید عدلی طیبی فرد، پژوهشگاه مواد و انرژی -شرکت شتاب کار

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶


:: برچسب‌ها: میلگرد 7131,فولاد سمانته , تغییرات خواص مکانیکی و مغناطیسی کاربیدهای سمانته ,



فولاد ابزاری چیست؟ فولاد ابزار
نوشته شده در سه شنبه 8 شهريور 1401
بازدید : 173
نویسنده : جواد دلاکان

فولاد ابزاری (به انگلیسی Tool steel) به دسته ای از فولادهای کربنی و آلیاژی گفته می شود.

فولاد ابزاری چیست؟ فولاد ابزار

فولاد ابزاری چیست

که برای ساخت ابزار و قالب مناسب هستند. این خواص شامل سختی بالا، مقاومت به سایش، مقاومت به تغییر شکل و دفورمه شدن وقابلیت حفظ لبه برش دهنده در دماهای بالا است. به همین دلیل فولادهای ابزاری برای شکل دهی به سایر مواد مناسب هستند.

فولادهای ابزاری معمولاً در کوره های قوس الکتریکی و تحت شرایط و الزامات ویژه فولادهای ابزاری ذوب می شوند. فولادهای ابزاری در حقیقت فولادهایی هستند. که قابلیت سخت کاری تمپرینگ دارند. درصد بالای عناصر آلیاژی و میکروساختار مناسب کاربردهای طاقت فرسا و شدید، باعث آن است که تولید این فولادها دشوار باشد.

 

خواص اصلی فولاد ابزار شامل مقاومت به سایش. سختی بالا و قابلیت حفظ شکل در دماهای فوق العاده بالا باعث استفاده از آن در ساخت ابزارهایی مانند مته، برقو، کاترها. قالب های فورجینگ و قالب های تزریق پلاستیک می شود.

فولاد ابزاری چیست

بازار فولاد ابزار در سال 2017 بیش از چهار و نیم میلیارد دلار ارزش داشت و انتظار می رود. تا سال 2024 صنعت به بیش از دو نیم میلیون تن فولاد ابزار نیاز داشته باشد. بزرگترین شرکت های تولید کننده فولاد ابزاری در جهان عبارتند از:

ناچی-فوجیکوشی، هیتاچی متالز، وست آلپاین، ساموئل سان اند کو، ارامت، تیانگونگ اینترنشنال، شرکت فولاد پنسیلوانیا، کی لو اسپشال استیل.

طبقه بندی فولادهای ابزاری

تعداد بسیار زیادی از فولادهای ابزار به طور متوسط مؤسسه آهن و فولاد آمریکا (AISI) طبقه بندی شده است. که توسط کشورهای بسیاری پذیرفته شده و استفاده می شود. سیستم طبقه بندی AISI فولادهای ابزار را بر اساس مشخصات برجسته آنها مانند آلیاژ. کاربرد یا عملیات حرارتی آنها به گروه های مختلفی تقسیم بندی می کند.

فولاد ابزاری - فولاد ابزار چیست؟

فولاد ابزاری چیست

ریزساختار مورد سختکاری یک فولاد ابزاری متداول، شامل زمینه ای از مارتنزیت که تمپر است حاوی پراکندگی های مختلفی از آهن و کاربیدهای آلیاژی است. وجود درصد بالایی از کربن یا عناصر آلیاژی در این فولادها، امکان سختکاری یا تشکیل مارتنزیت در هنگام خنک کاری را فراهم کرده است. هرچه درصد کربن یا عناصر آلیاژی در مارتنزیت در حال فوق اشباع بیشتر باشد، که آستنیت مادر به ارث می برد. درصد کاربیدهای شکل گرفته در حین تمپرینگ بیشتر خواهد بود.

 

هرچه درصد عناصر تشکیل دهنده کاربیدهای قوی بیشتر باشد. چگالی کاربیدهای پایدار در آستنیت در هنگام کار در حالت گرم و آستنیتی کردن بیشتر خواهد بود. این کاربیدها علاوه بر آنهایی که در حین تمپرینگ در مارتنزیت شکل گیری شدند. به عنوان اجزایی از میکروساختار باقی خواهند ماند. هرچه درصد کربن مارتنزیت و چگالی کاربیدها بیشتر باشد. مقاومت به سایش فولاد افزایش خواهد یافت. اما از طرفی چقرمگی آن کاهش می یابد.

گروه سختکاری شونده با آب :گروه W

فولادهای ابزاری سختکاری شونده در آب کمترین میزان عناصر آلیاژی را در میان فولادهای ابزاری دارند. و اساساً این فولادها، فولادهای کربنی هستند. به همین دلیل قابلیت سختکاری آنها پایین بوده و برای تشکیل مارتنزیت باید آنها را در آب کوئنچ کرد. حتی با وجود کوئنچ کردن در آب ممکن است فقط سطح فولاد سختکاری شود. با این حال درصد بالای کربن در فولادهای ابزاری سختکاری شونده در آب این اطمینان را می دهند. که در هر جایی که مارتنزیت شکل بگیرد. سختی بالایی وجود خواهد داشت. به دلیل درصد پایین عناصر آلیاژی در فولادهای ابزاری سخت شونده در آب، با عملیات حرارتی فقط کاربیدهای آهن شکل خواهند گرفت.

 

این فولادها توسط آب سختکاری می شوند. و به همین دلیل فولادهای ابزاری سختکاری شونده با آب نام گذاری شده اند. فولادهای گرید -W در حقیقت فولادهای کربن -بالای ساده هستند. این گروه از فولادهای ابزاری به دلیل قیمت پایین تر آنها نسبت به سایر فولادهای ابزاری پرکاربردترین فولادهای ابزاری هستند. این فولادها برای کاربردهایی که دمای بالا وجود ندارد بسیار مناسب است. در دماهای بالای 150 درجه سانتی گراد این فولادها خاصیت سختی خود را به شدت از دست می دهند. از آنجایی که این فولادها پس از عملیات حرارتی. خیلی بیشتر از فولادهای سختکاری شونده در هوا یا روغن، تاب برداشته یا ترک می خورند. امروزه نسبت به قرن 19 و 20 خیلی کمتر از آنها استفاده می شود.

گروه کار سرد

گروه سختکاری شونده با روغن (Oil Hardening): سری O

فولادهای ابزاری کار سرد، سختکاری شونده در روغن با هدف تولید فولادهایی با مقاومت به سایش بسیار بالا. در شرایط کار در حالت سرد توسعه یافتند. سختی بالا توسط مارتنزیت کربن-بالای که تمپر است در دمای پایین، برای تولید کاربیدهای متفرق بسیار ریز، ایجاد می شود. به دلیل وجود درصد بالای کربن و عناصر آلیاژی، قابلیت سختکاری تا عمق زیادی از قطعه، توسط کوئنچ کردن در روغن وجود دارد. گرید O7 حاوی درصد بالایی از کربن و درصد زیادی عناصر آلیاژی است. که باعث بهبود تشکیل گرافیت می شود. و این امر سبب افزایش قابلیت ماشین کاری و عمر قالب می شود.

 

این سری شامل گریدهای O1، O2،O6،O7 می باشد. فولادهای این گروه همگی در دمای 800 درجه سانتی گراد سختکاری و داخل روغن کوئنچ میشود. و در دمای زیر 200 درجه سانتی گراد برگشت (Tempering) دهی می شوند.

فولاد ابزاری چیست

گروه سخت کاری شوند در هوا (Air Hardening): سری A

فولادهای ابزاری آلیاژ-متوسط، کار سرد در شرایط کار در حالت سرد مقاومت به سایش بالایی دارند. گریدهای مختلف این فولادها، به دلیل دامنه مختلفی از درصد کربن و عناصر آلیاژی، ترکیب های مختلفی از چقرمگی و سختی ارائه می دهند. مشابه فولادهای سخت شوند در روغن،مقاومت در برابر سایش توسط مارتنزیت-پر-کربن و کاربیدهای ریز متفرق فراهم می شود. با این حال درصد عناصر آلیاژی به اندازه ای زیاد است که امکان تشکیل مارتنزیت در هنگام خنک شدن در هوا نیز وجود دارد.

 

و در نتیجه این فولادها در هوا نیز سختکاری می شوند. خنک کاری نسبتاً آهسته این فولادها در هوا باعث به حداقل رسیدن اعوجاج. و تاب برداشتن قطعه و پایداری ابعادی خوب آنها در هنگام عملیات حرارتی میشود. این گروه از فولادهای ابزاری دارای گریدی با نام A10 است که حاوی گرافیت نیز می باشد.

فولاد ابزاری چیست

فولادهای ابزاری نوین سختکاری شونده در هوا با ویژگی «تغییر شکل و دفورمه شدن کم» خود در طول فرایند خنک کاری شناخته می شوند. قابلیت ماشینکاری آنها معمولاً خوب بوده و توازن خوبی بین استحکام و مقاومت به سایش در آنها برقرار است.

اولین فولاد ابزار سختکاری شونده در هوا با عنوان Mushet Steel شناخته می شد.

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


:: برچسب‌ها: فولاد ابزاری چیست؟ , فولاد ابزار , Tool steel , فولاد کربنی , فولاد ساخت ابزار , فولاد ابزار سازی , فولادقالب سازی , فولاد ابزار تندبر , فولاد سردکار , فولاد گرم کار ,



بازدید : 190
نویسنده : جواد دلاکان

فولاد 1.5752(Case Hardening Steel)-فولادی دارای نیکل بسیار بالا می باشد که باعث مهم ترین ویژگی آن یعنی خاصیت چقرمگی آن شده است. این فولاد در گروه فولادهای آلیاژی سمانتاسیون قرار دارد. که از خاصیت ضربه گیری عالی و سختی پذیری سطحی برخوردار می باشد.

فولاد 5752

فولاد 5752-میلگرد 5752-گرد 5752-فولاد سمانته-میلگرد سمانته-سمانتاسیون-فولاد قالب سازی

نام های دیگر: 655H13 – 3310 – TEM – E200 – 5752S – IASC5752 – 14NiCr14 – SNC22

این فولاد در چرخ دنده های گیربکس که نیاز به آبکاری ندارد، محور، دسته پیستون، شافت و … مورد استفاده قرار می گیرند. و همچنین از این فولاد به صورت خام در صنایع پلاستیکی مانند قالب سازی نیز استفاده می کنند.

این فولاد با مشخصه 14NiCr14 در بازار موجود می باشد. این فولاد شبیه به فولاد 5920 است با این تفاوت که دارای نیکل بیشتری می باشد. و در نتیجه چقرمگی آن بهتر است. برای آنیل کاری فولاد 5752 ابتدا آن را در دمای 850 الی 880 درجه سانتی گراد نگهداری می کنند. و سپس در هوا سردکاری می شود. سمانته 1.5752 دارای سختی 229 برینل (HB) می باشد.

کاربرد: ساخت قطعات با سطح مقطع بزرگ تحت بارگذاری بالا مانند محورهای تحت بار زیاد همچون پلوس میل بادامک. چرخ دنده مخروطی و بشقابی و همچنین پین های ثابت و گردان

الکترود جوشکاری : E8018-C2

Heat Treatment °C

Forging: 850-1150

Annealing: 650-700

Hardening: 880-980/620-650/830-860/780-800

Quenching: Oil – Water – Salt Bath

فولاد 1.5752 در استانداردهای دیگر

کاربرد: اجزاء و قطعات تحت تنش و بارگذاری مجاز، قطعات اتصالی گاردان، چرخ دنده ها، محورهای کنترل

سمانته- کاربرد میلگرد سمانته: مانند چرخ دنده های انواع اتومبیل و تراکتور و ماشین های سنگین. ، پیچ دنده گرد ، رینگ ها ، اجزا فرمان ، بلبرینگ ها و … . استفاده می گردد.

فولاد 5752

سمانتاسیون

فولاد های سمانته به دو دسته تقسیم می شوند: سمانته های نیکل دار و سمانته های غیر نیکل دار،. که فولاد 1.7131 از جمله فولاد های سمانته غیر نیکل دار می باشد.

در واقع اصطلاح سمانته یا سمانتاسیون به معنی سختکاری سطحی می باشد. که در واقع نوعی عملیات حرارتی هستند که سطح نمونه سخت می گردد .و مغز نمونه بدون تاثیر سختی می ماند. که در واقع می گوییم سطح سخت و مغز چقرمه (نرم) است. این فولاد ترکیب شیمیایی 16 MnCR5 که در دمای 880-980 درجه سانتی گراد کربن دهی می گردد. که در دمای780-820 سطح آن سخت می شود .و در دمای 150-200 درجه ی سانتی گراد، تمپر می شود. و سطح آن ماکزیمم (البته سایز های ریز) به 47HRC می رسد. از موارد کاربرد آن می توان به چرخ های دندانه دار و اجزاء فرمان اشاره نمود.

درصد کربن فولاد سمانته پایین و حداکثر3/.است.فولادهای سمانتاسیون علاوه بر کربن دارای عناصر آلیاژی دیگر نظیر: منگنز، سیلیسیم ، کرُم ، مولیبدن و نیکل می باشند.

و تحت عملیات حرارتی کربن دهی تولید می شوند . به دلیل درصد پایین کربن بعد از عملیات حرارتی سخت کاری سختی بالایی نخواهند داشت.اگر سطح فولاد با عملیات کربن دهی پرکربن شود سختی سطح بالا می رود .

حداکثر نفوذ کربن 2 میلیمتر زیر سطح خواهد بود. فولادهای سمانته سطحی سخت و مغزی نرم و چقرمه و مقاومت به سایش بالایی خواهند .داشت و در عین حال مقاومت به ضربه بالایی نیز دارند.فولادهای سمانته به دو دسته با استانداردهای مختلف تقسیم می شوند .

فولاد سمانته نوع اول

این فولاد سمانته به علت دارا بودن کرم و نیکل بالا در مقابل فشار و اصطکاک مقاومت بسیار عالی دارد. برای ساخت انواع چرخ دنده پیستون میله های هزار خار – گژن پین میل فرمان و … به کار می رود .و با پلیش عالی در صنایع پلاستیک و ملامین نیز به کار می رود.با استاندارد 5919 (7210 آساب) تقریبا خواص مشابهی دارد.

فولاد سمانته نوع دوم

این فولاد سمانته نیز برای ساخت کلیه قطعاتی که باید دارای سطح بسیار سخت. و مغز نرم باشند به کار می رود.مانند انواع مختلف چرخ دنده – میل فرمان – کرانویل و پیتیون و غیره در صنایع پلاستیک نیز استفاده می شود. با استاندارد 7147 تقریبا خواص مشابهی دارد. برای ساخت پوسته های فک آسیاب و میل جک های هیدرولیکی نیز به کار می رود.

ایجاد پوشش های پایه کروم

ایجاد پوشش‌های پایه کروم بر فولاد ساده کم کربن به روش سمانتاسیون بسته‌ای عملیات حرارتی سطحی فرایندی. شامل گستره وسیعی از روش های مختلف می باشد. که برای افزایش سختی، بهبود مقاومت سایشی،. افزایش میزان مقاومت به خستگی و حتی افزایش مقاومت در برابر خوردگی .به کار می رود، بدون اینکه خواص درونی قطعه نظیر. نرمی مغز و چقرمگی تحت تاثیر قرار گیرد. از جمله اعمال سطحی، عملیات پوشش دهی نفوذی است.

در این پروژه

از روش کروم دهی. به روش سمانتاسیون بسته ای.، از جمله روش های ایجاد پوشش نفوذی.، برای ایجاد پوشش های کروم .بر روی سه نوع فولاد کربنی ساده استفاده شد. این عملیات 1000 C انجام و اثر متغیرهای زمان و مقدار کربن فولاد مورد بررسی واقع شد. فولادها دارای مقادیر کربن 4%، 13/0 و 45/0 بودند. و هر کدام در زمان های 2، 4، 6، 8 و 10 ساعت مورد عملیات کروم دهی قرار گرفتند.

مخلوط پودر

مخلوط پودر مورد استفاده برای این آزمایشات. بصورت 25 درصد وزنی کروم.، 5 درصد وزنی کلرید آمونیوم .و 70 درصد وزنی پیدر آلومین انتخاب شد. بررسی نتایج اشعه ایکس وجود فازهای (CrFe)2N1-x ، .Cr23C6 و (CrFe)7C3 .را نشان داد نتایج سختی سنجی مشخص کرد .

که تغییرات زمان انجام آزمایشات کروم دهی و همچنین مقدار کربن فولاد تاثیر چندانی بر میزان سختی پوشش حاصل ندارد. که با توجه به وجود فازهای مشابه در پوشش ها، منطقی به نظر می رسد.

بررسی ضخامت پوشش ها هم نشان داد .که افزایش زمان انجام آزمایشات و همچنین افزایش مقدار کربن فولاد.، باعث افزایش ضخامت پوشش می شود. از رسم نمودار ضخامت بر حسب ریشه دوم زمان انجام آزمایش.، مقدار Kp برای فولادهای 1، 2 و 3 .به ترتیب 80/1، 24/2 و47/3 بدست آمد .و مشخص گردید .

که با افزایش مقدار کربن فولاد مقدار Kp نیز افزایش می یابد. و این به معنای افزایش ضخامت پوشش می باشد.

فولادهای نیکل دار ، رایج در صنعت کشور عبارتند از :

1.5920-1.5919-1.6587-1.6657-1.5752-1.6571

فولاد سمانته 5920 .1از دسته فولادهای آلیاژی سمانتاسیون می باشد که با مشخصه 18CrNi8 در بازار موجود می باشد. درصد کربن در این فولاد بسیار پایین است به همین دلیل بعداز عملیات سخت کاری ، سختی زیادی نخواهد داشت. همچنین فولاد سمانته ۱.۵۹۲۰ حاوی عناصر تشکیل دهنده دیگری مانند کروم و نیکل است. که وجود هر کدام از این عناصر موجب تغییر مشخصات فولاد سمانته ۵۹۲۰ می شود. به طور مثال وجود نیکل باعث بهبود چقرمگی فولاد می شود. فولاد سمانته 1.5920 که طبق استاندارد 1/7139 DIN آلمان شناخته شده است.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


:: برچسب‌ها: فولاد 5752 , میلگرد 5752 , گرد 5752 , فولاد سمانته , میلگرد سمانته , سمانتاسیون , فولاد قالب سازی , ,



بازدید : 186
نویسنده : جواد دلاکان

بررسی خواص فولاد Crofer 22APU پوشش داده شده با Co/y2O3 به روش آبکاری الکتریکی با جریان مستقیم

فولاد Crofer 22apu

فولاد زنگ نزن فریتی Crofer 22 APU به عنوان ماده ای مناسب. برای ساخت اتصال دهنده در پیل های سوختی اکسید جامد مورد استفاده قرار می گیرد. از مشکلات مهم این فولاد، افزایش مقاومت الکتریکی و تبخیر کروم از آن در دمای بالاست. به منظور رفع این مشکلات می توان از یک لایه پوشش محافظ روی آن استفاده کرد. در این پژوهش، از پوشش کامپوزیتی کبالت/اکسید ایتریم متشکل به روش آبکاری الکتریکی استفاده شد. سپس مقاومت به اکسیداسیون و مقاومت الکتریکی نمونه های پوشش دار و بدون پوشش مورد بررسی قرار گرفت.

 

به منظور بررسی اثر اکسیداسیون روی ریزساختار و ترکیب نمونه ها، از آنالیزهای میکروسکوپی الکترونی روبشی و پراش پرتو ایکس استفاده شد. نتایج نشان داد نرخ اکسیداسیون نمونه بدون پوشش پس از 500 ساعت اکسیداسیون در هوا. در 800 درجه سانتیگراد حدود چهار برابر نرخ اکسیداسیون نمونه پوشش دهی گردید. تشکیل ترکیبات اسپینلی Co3O4 و MnCo2O4 روی نمونه پوشش دار هدایت الکتریکی را بهبود داد. مقدار مقاومت ویژه سطحی نمونه پوشش دار و بدون پوشش بعد از 500 ساعت اکسیداسیون. به ترتیب برابر 15/8 و 25/9 میلی اهم بر سانتی متر مربع اندازه گیری شد.

فولاد Crofer 22apu

مقدمه

پیل سوختی اکسید جامد (SOFC) یک وسیله تبدیل انرژی است. که از طریق ترکیب الکتروشیمیایی یک سوخت و یک اکسیدان در امتداد یک الکترولیت اکسیدی هدایت کننده یونی، تولید الکتریسیته و گرما می کند. در کاربردهای عملی SOFC، تعداد زیادی از سلول های واحد نسبتاً کوچک به یکدیگر متصل می شوند. تا جریان الکتریسیته لازم را فراهم کنند. پیل های منفرد توسط یک جزء سازنده به نام اتصال دهنده بین سلولی به یکدیگر متصل می شوند. تا یک بدنه واحد را تشکیل دهند.

 

این اجزاء علاوه بر اتصال الکتریکی، به صورت یک سد فیزیکی مانع از هر گونه تماس بین اتمسفرهای احیایی و اکسیدی می شوند. اتصال دهنده ها باید دارای هدایت الکتریکی خوب. نفوذ ناپذیری عالی، انطباق ضریب انبساط حرارتی با الکترودها و الکترولیت. مقاومت به اکسیداسیون خوب، قیمت پایین و در عین حال شکل دهی و ساخت آسان باشند. با کاهش دمای کاری سیستم SOFC به 800 -600 درجه سانتی گراد مواد فلزی به عنوان مواد مناسبی برای ساخت اتصال دهنده مطرح شدند.

 

فولاد زنگ نزن فریتی از بیشترین پتانسیل برای کاربرد به عنوان مواد اتصال دهنده در SOFC برخوردارند. در بین فولادهای زنگ نزن فریتی، Crofer 22APU به دلیل تشکیل SOFC روی اکسید کروم. از ضخیم شدن پوسته اکسید کروم جلوگیری کرده و باعث بهبود خواص مانند افزایش مقاومت به اکسیداسیون و هدایت الکتریکی فولاد می شود. با وجود این، لایه اکسید اسپینل منگنز- کروم از رشد لایه اکسید کروم بطور کامل جلوگیری نخواهد کرد.

 

این امر باعث ایجاد دو مشکل مهم در سیستم SOFC می شود. 1-افزایش مقاومت الکتریکی 2-مهاجرت اجزای کروم دار اتصال دهنده از طریق لایه اکسیدی به سمت کاتد. که می تواند باعث تخریب کاتد و نیز کاهش میزان کروم آلیاژ اتصال دهنده شود. که هر دو این عوامل می توانند روی عملکرد پیل تأثیر منفی داشته باشند. به همین دلیل لازم است که از یک پوشش محافظ های استفاده شود.

 

پوشش های مورد استفاده برای اتصال دهنده های بین سلولی در SOFC به سه گروه عمده تقسیم می شوند. پوشش های اکسید اسپینل مانند 3O4(CoMn)، 3O4(Mn،Cr) و 3O4(Mn,Cu)، پوششهای پیروسکایت مانند MnO3(La,Sr)، C0O3(La,Sr) و CrO3(La,Sr) و پوشش های اکسید عناصر راکتیو. عناصر راکتیو شامل عناصری از قبیل هافنیم (Hf)، زیرکونیوم (Zr)، ایتریم (Y) و لانتانیم (La) هستند. که قابلیت بسیار بالایی برای ترکیب شدن با اکسیژن و تشکیل اکسید دارند. پیوند این عناصر با اکسیژن بسیار قوی است.

 

در بین پوشش های اعمالی روی اتصال دهنده های فلزی، کبالت که در دماهای بالا به اکسیدهای اسپینل آن تبدیل می شود. به عنوان یکی از قابل قبول ترین پوشش ها معروف است. با وجود این دستیابی به یک پوشش مؤثرتر با یک روش مناسب روی این اتصال دهنده ها. برای دستیابی به مقاومت به اکسیداسیون بالاتر و هدایت الکتریکی بهتر در مقایسه با اسپینل های کبالت ضروری است. یک روش مؤثر برای اعمال پوششی مطلوب تر، ترکیب اسپینل های کبالت با عناصر راکتیو در یک پوشش است. این روش در تحقیقات سایر محققین نتایج مطلوبی داشته است.

 

فولاد Crofer 22apu

فولاد Crofer 22apu

اکسید عناصر راکتیو نفوذ سربالایی کروم را آهسته کرده و چسبندگی پوسته اکسید کروم را افزایش می دهند. اما تبخیر اجزای کروم دار را کاهش نمی دهند. از طرفی اکسیدهای اسپینلی می توانند مقاومت الکتریکی و نیز تبخیر کروم را به طور موفقیت آمیزی کاهش دهند. روش های مختلفی برای رسوب کبالت روی اتصال دهنده های داخلی در سیستم SOFC مورد استفاده قرار گرفته است. در بین این روش ها آبکاری الکتریکی یک روش پوشش دهی ساده و ارزان است. یک مزیت مهم این روش فراگیر بودن آن است. به طور مثال با این روش می توان ذرات فاز ثانویه غیرهادی را به یک زمینه فلزی به صورت یک پوشش یکنواخت پیوند داد.

فولاد Crofer 22apu

2-مواد و روش تحقیق

در این تحقیق از فولاد زنگ نزن فریتی Crofer 22 APU ترکیب شیمیایی آن در جدول (1) آورده شده است. عنوان زیر لایه برای پوشش دهی به روش آبکاری الکتریکی با جریان مستقیم استفاده شد. از این فولاد قطعاتی به ابعاد 10×10×2 میلی متر تهیه شد. نمونه با کاغذ سنباده SiC تا شماره 2500 پولیش و در استون با دستگاه آلتراسونیک چربی گیری شدند. برای بالا بردن اکتیویته سطح و چسبندگی پوشش، نمونه ها به مدت دو دقیقه. در محلولی شامل پنج درصد وزنی اسید نیتریک و 25 درصد وزنی اسید کلریدریک قرار گرفتند.

 

سپس نمونه ها در الکترولیتی حاوی 90 گرم بر لیتر CoCl2.6H2O و 90 میلی لیتر بر لیتر HCl 37% آبکاری شدند. تا لایه نازکی از کبالت روی سطح نمونه ها تشکیل شود. این عملیات، لایه اکسید متشکل بر سطح فولاد را از بین می برد و باعث بهبود چسبندگی پوشش به سطح فولاد می شود. این نمونه ها به عنوان کاتد در نظر گیری شد. و از یک قطعه کبالت خاصل به ابعاد 5×20×20 میلی متر نیز به عنوان آند استفاده شد.

 

پوشش کامپوزیتی به وسیله دستگاه پتانسیواستات Sama500. با چگالی جریان 20 میلی آمپر، زمان 15 دقیقه و دمای 45 درجه سانتی گراد روی اتصال دهنده فولادی رسوب می دهند. فرآیند آبکاری در محلول واتس کبالت با ترکیب بهینه انجام شد. سوب دهی کبالت به روش آبکاری الکتریکی روی زیر لایه های مختلف و با استفاده از حمام های آبکاری متفاوتی انجام می شود. از جمله محلول هایی که برای آبکاری کبالت استفاده می شود. از جمله محلول هایی که برای آبکاری کبالت استفاده می شود.

 

می توان به محلول سیترات، محلول شامل تری اتیلین دی آمین و کلرید کبالت در 100 درصد هیدروکسید پتاسیم. محلول تیوسیانات کبالت دی دی متیل فرم آمید. کبالت در محلول آبی کلرید آمونیوم و محلول الکترولیت گلوکونات اشاره کرد. یکی از اولین محلول ها که برای رسوب دهی کبالت بکاری گیر شد.

توسط شخصی به نام واتس با ترکیب شیمیایی شامل: سولفات کبالت به عنوان ماده اصلی که حاوی یون های کبالت است. کلرید کبالت برای کمک به انحلال آند، کلرید سدیم برای بهبود هدایت یونی و اسید بیوریک به عنوان تنظیم کننده Ph است. این محلول برای آبکاری کبالت روی زیر لایه های فولادی استفاده می شود. و به حمام واتس کبالت معروف است. در جدول (2) ترکیب شیمیایی حمام آبکاری و شرایط عملکرد فرایند آبکاری نمایان و مشخص است. همه آزمایش ها در 100 میلی لیتر الکترولیت که با آب دیونیزه مهیا گردید، انجام شد. به منظور کنترل Ph از اسید سولفوریک و هیدروکسید آمونیوم استفاده شد.

 

بعد از آبکاری، نمونه های پوشش دار و بدون پوشش. به مدت 500 ساعت در دمای 800 درجه سانتی گراد تحت اکسیداسیون همدما و هوای ساکن قرار گرفتند. وزن نمونه ها قبل و بعد از آزمون توسط ترازوی دیجیتال با دقت 6-10 گرم اندازه گیری شد. برای اطمینان از نتایج، آزمون اکسیداسیون همزمان روی سه نمونه مشابه انجام شد. برای بررسی مورفولوژی سطح نمونه ها و ضخامت پوشش و لایه های اکسیدی از میکروسکوپ الکترونی روبشی (SEM). و برای بررسی فازهای تشکیل شده در پوشش بعد از اکسیداسیون از الگوی پراش پرتو ایکس (XRD) استفاده شد.

 

آزمون چسبندگی به روش کراس کات برای تعیین میزان چسبندگی پوشش Co/Y2/O3 به زیر لایه فولادی انجام شد. این آزمون که روشی ساده و عملی برای ارزیابی چسبندگی سیستم های پوشش دهی تک و چند لایه است. طبق استاندارد ASTM D3359 (2017) صورت گرفت. ابتدا با ابزار برشی مناسب طرحی مشبک روی لایه پوششی تا رسیدن به زیر لایه ایجاد شد. و با برس در جهت قطری پنچ مرتبه روی برش های برش چسبانده و از روی سطح جدا شد. در نهایت ناحیه برش خورده با ذره بین نورانی تحت بررسی قرار گرفت.

فولاد Crofer 22apu

 

برای اندازه گیری مقاومت الکتریکی ویژه سطحی (ASR) نمونه های پوشش دار و بدون پوشش. از سیستمی استفاده شد که شماتیک آن در شکل (1) نمایان و کاملاً مشخص می باشد. برای این آزمون، خمیز و مش نقره محصول شرکت Full Cell materials آمریکا. به مساحت یک سانتی متر مربع روی نمونه های پوشش دار و نمونه های بدون پوشش قرار داده شد. سپس نمونه ها توسط این خمیر و مش نقره به سیم هایی از جنس نقره متصل شدند. که این سیم ها نقش اتصال دهنده نمونه به دستگاه اتولب را بازی می کردند. نمونه ها پس از مهیا سازی سطح و اتصال به سیم ها در یک کوره الکتریکی قرارگیری شدند.

 

و سر دیگر سیم های متصل به نمونه ها به دستگاه اتولب مدل Autolab Pgstat 302 متصل شد. از نرم افزار Nova 1.6 برای اجرای برنامه کرونوپتانسیو متری استفاده شد. در این برنامه جریان ثابت است. برای انجام این آزمون از جریان ثابت 500 میلی آمپر استفاده شد. خروجی اتولب که توسط نرم افزار ثبت می شود. ولتاژ است. با داشتن ولتاژ و جریان، مقدار مقاومتبه وسیله قانون اهم (V/I) محاسبه شد. بدین ترتیب با داشتن سطح نمونه ها و مقدار مقاومت اهمی، مقدار مقاومت الکتریکی سطحی محاسبه شد. اندازه گیری مقاومت الکتریکی سطحی بر حسب دما (800-650 درجه سانتی گراد). و زمان (200 ساعت در دمای 800 درجه سانتی گراد) در هوای ساکن در کوره الکتریکی انجام شد.

فولاد Crofer 22apu

فولاد Crofer 22apu

3-نتایج و بحث

1-3- بررسی ریزساختار و ترکیب پوشش

شکل (2) تصویر میکروسکوپی الکترونی روبشی (شکل2-الف). و تحلیل طیف سنجی پراکندگی انرژی پرتو ایکس (EDS) (شکل 2-ب) پوشش ایجادی بر روی زیر لایه فولادی را نشان می دهد. همان گونه که در شکل (الف) مشاهده می شود. ذرات اکسید ایتریم به صورت یکنواخت و همگن در زمینه کبالت دچار پراکندگی شدند. پوشش اعمالی به طور کامل متراکم است و هیچگونه تخلخل و حفره ای در مقیاس بزرگ در آن نمایان و مشخص نیست.

 

تصاویر میکروسکوپ الکترونی روبشی از سطح نمونه های پوشش داده شده. توسط نرم افزار آنالیز تصویر ImageJ مورد بررسی قرار گرفت. و میانگین اندازه ذرات تقویت کننده در سطح پوشش 2/25 میکرومتر تعیین شد. میانگین اندازه ذرات تقویت کننده تقریباً 1/5 میکرومتر است. (شکل 3) که حاکی از اگلومره شدن ذرات Y2O3 در طی فرآیند آبکاری الکتریکی است.

 

شکل (4) تصویر میکروسکوپی الکترونی روبشی (شکل 4- الف). و تحلیل طیف سنجی پراکندگی انرژی پرتو ایکس (شکل4-ب) از مقطع عرضی نمونه مورد پوشش با کامپوزیت Co/Y2O3 را نشان می دهد. پوشش ایجادی چسبندگی کاملی به زیر لایه داشت و هیچ گونه تخلخل و جدایشی بین پوشش و زیر لایه مشاهده نمی شود. ضخامت پوشش متشکل روی تمام سطح زیر لایه فولادی تقریباً یکنواخت و برابر هفت میکرومتر تعیین شد.

2-3- چسبندگی پوشش به زیر لایه

شکل (5) نتایج آزمون چسبندگی به روش کراس کات را نشان می دهد.

فولاد Crofer 22apu
فولاد Crofer 22apu

نمایش تصویر سطح نمونه پوششی با Co/Y2O3 پس از این آزمون حاکی از آن است. که چسبندگی این پوشش بر اساس رده بندی استاندارد در کلاس 3B قرار دارد. یعنی پوشش در امتداد لبه ها و یا در محل های تقاطع برش های جدا گردید.

فولاد Crofer 22apu

فولاد Crofer 22apu

و ناحیه جدا شده بیشتر از 5 درصد و کمتر از 15 درصد است. طبق استاندارد، این نتیجه به معنای این است که پوشش اعمالی چسبندگی مناسبی به زیر لایه فولادی دارد.

3-3- سینیتیک اکسیداسیون

به منظور مقایسه رفتار اکسیداسیون نمونه دارای پوشش و نمونه بدون پوشش. تغییرات وزن بر واحد سطح نمونه ها به عنوان تابعی از زمان اکسیداسیون اندازه گیری شد. هرچند استفاده از تغییر وزن برای تعیین مقاومت به اکسیداسیون آلیاژهای کروم دار در دماهای بالا. به دلیل تبخیر کروم، مقداری خطا را در تفسیر نتایج نشان می دهد. اما این نتایج بیشتر برای مقایسه رفتار اکسیداسیون نمونه ها استفاده می شوند. شکل (6-الف) تغییرات وزن ویژه و شکل (6-ب) مربع تغییرات وزن ویژه بر حسب زمان اکسیداسیون در 800 درجه سانتیگراد را نشان می دهد. بعد از 500 ساعت اکسیداسیون نمونه دارای پوشش تغییر وزنی برابر 0.45 میلی گرم. و نمونه بدون پوشش تغییر وزنی برابر 0.41 میلی گرم را از خود نشان می دهد.

 

با توجه به شکل (6-ب) می توان نتیجه گرفت که رفتار اکسیداسیونی این آلیاژ، هم به صورت پوشش دار. و هم به صورت بدون پوشش، با توجه به رابطه (1) از قانون سینیتیک پارابولیک پیروی می کند. زیرا بر طبق تئوری واگنر اگر نمودار مربع تغییرات وزن بر حسب دما یک خط راست باشد. نفوذ عناصر در لایه اکسیدی و یا پوشش، آهسته ترین فرایندی که نرخ اکسیداسیون را کنترل می کند. و تغییر وزن ماده مورد نظر از قانون پارابولیک تبعیت می کند.

 

که در آن δm تغییر وزن نمونه ها، A مساحت سطح نمونه ها، Kp ثابت نرخ پارابولیک،t زمان و C ثابت انتگرال است. که شروع سینیتیک پارابولیک را نشان می دهد. در اینجا دلیل رفتار پارابولیک نمونه های بدون پوشش و نمونه های دارای پوشش این است. که رشد لایه اکسید کروم متشکل روی نمونه ها از قانون پارابولیک تبعیت می کند.

مقادیر ثابت اکسیداسیون نمونه بدون پوشش از صفر تا 60 ساعت اکسیداسیون. برابر 5×13-10=Kp و از 50 تا 500 ساعت اکسیداسیون برابر 3×13-10=Kp است. نرخ اکسیداسیون بالاتر اولیه مربوطه به تشکیل پوسته اکسید کروم روی فولاد است. و پس از 50 ساعت اکسیداسیون با تشکیل پوسته اکسیدی نرخ اکسیداسیون کاهش می یابد. نرخ اکسیداسیون نمونه دارای پوشش هم در 100 ساعت ابتدایی اکسیداسیون بالاست (3×13-16=Kp).

 

دلیل این امر اکسیداسیون سریع کبالت است. که منجر به تشکیل اکسیدهای اسپینلی کبالت می شود. دلیل دیگری که می توان برای افزایش وزن بالای اولیه نمونه دارای پوشش با Co/Y2O3 (100 ساعت ابتدایی آزمون اکسیداسیون) ذکر کرد. اکسیداسیون همزمان پوشش و زیر لایه است. بعد این افزایش وزن سریع اولیه، مقدار افزایش وزن این نمونه با زمان اکسیداسیون به شدت کاهش می یابد. که دلیل این امر ایجاد یک لایه محافظ اکسیدی طی 100 ساعت ابتدایی فرآیند اکسیداسیون است.

 

با مقایسه زمان لازم برای تشکیل لایه محافظ اکسیدی در اثر اکسیداسیون پوشش اعمالی Co/Y2O3. با زمان لازم برای تشکیل لایه محافظ اکسیدی در پوشش هایی مانند MnCu و Ni-Co-Fe در شرایط کاری مشابه می توان گفت. سرعت تشکیل لایه اکسیدی در این پوشش بسیار بالاتر بوده و در کاهش نرخ اکسیداسیون نیز اثر بخشی بیشتری داشته است. کاهش نرخ اکسیداسیون پس از تشکیل این لایه اکسیدی محافظ نشان دهنده این است. که نفوذ اکسیژن به فصل مشترک فولاد و زیر لایه نیز به تأخیر افتاده است. که این در توافق با کار سایر پژوهشگران است.

فولاد Crofer 22apu

پس از 100 ساعت اکسیداسیون نرخ اکسیداسیون نمونه پوشش داده شده به شدت کاهش می یابد (8×14-10=Kp). این کاهش نرخ اکسیداسیون ناشی از تشکیل اکسید کبالت است. نرخ اکسیداسیون پایین، برای زمان های طولانی اکسیداسیون بسیار مهم است. زیرا نشان دهنده کاهش رشد لایه اکسید کروم است که مقاومت الکتریکی بالایی دارد. به طور کلی می توان گفت که محصول اکسیداسیون پوشش کبالت، نرخ رشد لایه اکسید کروم را کاهش داده است.

 

اکسید عناصر راکتیو سدهای مناسبی برای جلوگیری از تبخیر کروم نیستند. زیرا به طور معمول متخلخل و نازک هستند. بنابراین این اکسیدها نمی توانند عامل مناسبی برای جلوگیری از مسمومیت کاتد در سیستم های SOFC شوند. با وجود این حضور اکسید ایتریم در پوشش کبالت می تواند باعث افزایش چسبندگی پوشش به زیر لایه و نیز کاهش نرخ اکسیداسیون. و مقاومت الکتریکی سطحی نمونه پوشش داده شده در مقایسه با نمونه بدون پوشش شود.

 

4-3- ریزساختار و ترکیب شیمیایی نمونه های پس از اکسیداسیون بدون پوشش را پس از اکسیداسیون نشان می دهد.

فولاد Crofer 22apu

شکل (7) تصویر میکروسکوپی الکترونی روبشی از سطح نمونه

فولاد Crofer 22apu

سطح نمونه بدون پوشش پس از 500 ساعت اکسیداسیون در هوا در 800 درجه سانتی گراد شامل یک لایه سیاه اکسیدی است. که روی این لایه دانه های هرمی شکل در جهت مرزدانه های لایه اکسیدی متشکل اند (شکل 7-الف). این دانه ها جزیره های کوچکی بر روی سطح نمونه تشکیل داده اند. نتایج تحلیل EDS از سطح نمونه نشان می دهد. که لایه سیاه رنگ شامل عناصر کروم، منگنز، اکسیژن و مقدار کمی عنصر آهن است. و دانه های هرمی شکل شامل عناصر کروم، منگنز و اکسیژن است (جدول 3). نتایج تحلیل پراش پرتو ایکس نشان می دهد. که لایه اکسیدی سیاه رنگ شامل اکسیدهای اسپینلی MnCr2O4 و FeCr2O4 است

 

. و ذرات هرمی شکل فقط رسوبات MnCr2O4 هستند (شکل 7). شکل (6-ب) سطح نمونه پوشش داده شده را بعد از 500 ساعت اکسیداسیون نشان می دهد که شامل ذرات هرمی شکل است. و علامت قابل توجهی از ترک و یا پوسته شدن در سطح آن دیده نمی شود. تحلیل پراش پرتو ایکس نشان می دهد که سطح نمونه پوشش داده شده بعد از اکسیداسیون شامل اکسیدهای اسپینلی MnCr2O4،MnCo2O4،Co3O4 و FeCr2O4 است (شکل8).

 

شکل (9) تصویر میکروسکوپی الکترونی روبشی و تحلیل پراش انرژی پرتو ایکس از مقطع عرضی مورد پولیش . نمونه های عاری از پوشش (شکل 8-الف و 8-ب) و مورد پوشش با کامپوزیت Co/Y2O3 (شکل 9-ج و 9-د) را نشان می دهد. در هر دو نمونه دو لایه روی زیر لایه فولادی مشاهده می شود. سطح نمونه بدون پوشش شامل یک لایه خارجی غنی از اکسید منگنز -کروم. و یک لایه داخلی غنی از اکسید کروم است که با نتایج سایر محققین مطابقت دارد.

 

ضخامت این لایه های اکسیدی همانطور که در شکل (9-الف) و (9-ب) نشان داده شده است. حدود سه میکرومتر است. تحلیل پراش پرتو ایکس تأیید می کند. که لایه داخلی اکسید کروم و لایه خارجی اکسید اسپینلی MnCr2O4 به علاوه مقدار کمی FeCe2O4 است (شکل 8). سطح نمونه پوشش داده شده نیز شامل یک لایه داخلی غنی از اکسید کروم و یک لایه خارجی غنی از اکسیدهای کبالت و منگنز-کبالت است. آنالیز نقشه عنصری از مقطع عرضی نمونه تشکیل این اکسیدهای اسپینلی را تائید می کند. ذرات Y2O3 که قبل از اکسیداسیون در سطح

 

نمونه پوشش داده شده مشاهده می شدند. (شکل 3-الف) بعد از اکسیداسیون روی سطح قابل مشاهده نیستند (شکل 7-ب)، اما در داخل لایه اکسید کبالت خارجی معلوم و مشخص میشود (شکل 9-ج). زیرا این ذرات در اثر رشد لایه اکسید کبالت به دلیل نفوذ یون های فلزی و اکسیژن، در این لایه فرو رفته اند. و در تصویر مقطع عرضی پوشش قابل مشاهده هستند. توزیع عناصر ایتریم و اکسیژن در مقطع نمونه پوشش دهی می شود. که به وسیله آنالیز map عنصری در شکل های (10-د) و (10-و) معلوم و مشخص است. نیز وجود ذرات اکسید ایتریم را در مقطع عرضی پوشش اثبات می کند. لایه اکسید اسپینلی کبالت چسبندگی خوبی به لایه اکسید داخلی و نیز زیرلایه فولادی دارد (شکل 9-ج).

 

نفوذ عناصر در فصل مشترک پوشش و زیر لایه مسئله رایجی است. در تحقیقات مورد انجام توسط کروکاوا و جالانتا مشخص شد که منگنز. آهن و کروم می توانند از طریق مکانیزم نفوذ حجمی و از طریق مکانیزم مرزدانه. در اسپینل های Co و Mn-Cr و در دمای 800 درجه سانتی گراد نفوذ کنند. ابتدا همزمان با تشکیل پوشش Co/Y2O3، نفوذ Co از پوشش به زیرلایه و نفوذ Fe و Cr از زیرلایه به سمت پوشش رخ می دهد. اما مقدار نفوذ این عناصر بسیار کم است. Cr و Fe در طول مراحل اولیه اکسیداسیون نیز نفوذ می کنند.

 

که این امر منجر به مشاهد Fe در پروفیل لایه اسپینلی بعد از اکسیداسیون می گردد (شکل 9-د). آنالیز Map عنصری نیز نفوذ این عناصر را تأیید می کند (شکل 10). اما از آنجایی که انرژی آزاد منفی تشکیل اکسید کروم بیشتر از انرژی آزاد تشکیل اکسید آهن است. اکسید کروم پایدارتر از اکسید آهن است. بنابراین لایه Cr2O3 در فصل مشترک پوشش و زیرلایه تشکیل می شود. از سوی دیگر با توجه به اینکه ضریب نفوذ یون های فلزی در ترتیب DMn>DFe>DCr کاهش می یابد. به دلیل ضریب نفوذ بالاتر یونهای منگنز، از زیرلایه به سمت سطح فولاد لایه اسپینلی MnCr2O4 روی سطح لایه اکسیدی Cr2O3 تشکیل می شود. بنابراین فشار جزئی موضعی اکسیژن در اثر تشکیل MnCr2O4 و Cr2O3 بسیار کاهش یافته و برای تشکیل اکسید آهن بسیار کم است.

 

فولاد Crofer 22apu

مقایسه تصاویر شکل (9) نشان می دهد. که ضخامت لایه Cr2O3 تشکیلی روی نمونه بدون پوشش حدود دو میکرومتر است. در حالی که ضخامت لایه Cr2O3 تشکیلی روی نمونه مورد پوشش دهی حدود 700 نانومتر است. بنابراین لایه پوشش نرخ رشد لایه Cr2O3 را به حدود یک سوم کاهش می دهد. این لایه پوشش محافظ از نفوذ کروم به سمت خارج و نفوذ اکسیژن به سمت داخل فولاد جلوگیری کرده. و به همین دلیل نرخ رشد لایه اکسیدی Cr2O3 را کاهش می دهد . اثر اکسید عناصر اکتیو در کاهش رشد لایه اکسیدی Cr2O3. با توجه به اثر این عناصر بر افزایش مقاومت به اکسیداسیون فولادهای مشابه هنگامی که به عنوان پوشش روی این آلیاژها اعمال می شوند. توضیح داده می شود.

5-3- رفتار الکتریکی

پوشش مورد اعمال روی اتصال دهنده داخلی در پیل های سوختی اکسید جامد باید دارای مقاومت الکتریکی سطحی کمی باشد.

 

تا هدایت الکتریکی بین الکترودهای سلول های مجاور را افزایش دهد. بنابراین برای نشان دادن مفید بودن پوشش کامپوزیتی اعمال شده روی اتصال دهنده فولادی باید ثابت کرد. که این پوشش در شرایط کاری پیل های سوختی اکسید جامد، هدایت الکتریکی بالاتری در مقایه با نمونه بدون پوشش دارد. بدین منظور مقدار مقاومت الکتریکی سطحی نمونه ها بعد از 500 ساعت اکسیداسیون در هوا در 800 درجه سانتی گراد اندازه گیری شد. شکل(11) نمودار وابستگی مقاومت الکتریکی سطحی به دما را نشان می دهد. مقدار مقاومت الکتریکی سطحی با افزایش دما از 650 تا 800 درجه سانتی گراد کاهش می یابد. این رفتار مشابه رفتار مواد نیمه رساناست. که نشان می دهد هدایت الکتریکی با دما فعال می شود. مقدار مقاومت الکتریکی سطحی در این مواد با استفاده از رابطه (2) محاسبه می شود.

فولاد Crofer 22apu

 

که در آن A ثابت تناسب، T دما بر حسب کلوین. Ea انرژی اکتیواسیون برای هدایت از شیب نمودار (ASR/T) log بر حسب (T/1) محاسبه می شود (شکل 11). مقدار انرژی اکتیواسیون برای نمونه بدون پوشش برابر 26/22 کیلوژول بر مول و برای نمونه پوشش دهی شود. برای 11/53 کیلوژول بر مول به دست آمد. نمونه پوشش دهی میشود. در تمام محدوده های دمایی بررسی شده مقدار مقاومت الکتریکی سطحی کمتری از خود نشان می دهد. که این امر دلیلی بر اثر مفید پوشش اعمالی در جهت جلوگیری از تشکیل و رشد لایه های اکسیدی.

 

با مقاومت الکتریکی بالا مانند Cr2O3 است. دلیل مقدار مقاومت الکتریکی سطحی کمتر نمونه پوشش دهی میشود. تشکیل ترکیبات اسپینلی در طول فرآیند اکسیداسیون است. این ترکیبات اسپینلی که دارای ساختار مکعبی به صورت، A1+XB2-XO4 هستند. دارای آنیون های اکسیژن که مرکز وجود را پر می کنند. و کاتیون های A و B از عناصر مشابه دارای والانس های متفاوت نیز هستند. این کاتیون ها موقعیت های اکتاهدرال یا تتراهدرال را پر می کنند. بنابراین امکان انتقال راحت تر الکترون ها بین کاتیون های مجاور با والانس مشخص وجود دارد. این امر هدایت الکتریکی ترکیبات اسپینلی را افزایش می دهد. تحقیقات نشان می دهد که انرژی اکتیواسیون برای انتقال الکترون ها با جانشینی یون های چهار ظرفیتی شبیه منگنز کاهش می یابد.

 

بنابراین اگرچه وجود منگنز در پوشش ممکن است پارامتر شبکه و نفوذ سربالایی کروم را افزایش دهد. اما هدایت الکتریکی پوشش را افزایش می دهد. از سوی دیگر، کبالت یک عنصر نوع P است. که تأثیر مهمی روی افزایش هدایت الکتتریکی ترکیبات اسپینلی مانند MnCo2O4 شصت ثانیه بر سانتی متر. CoCr2O4 هفت و چهار دهم ثانیه بر سانتی متر و CoFe2O4 نود و سه صدم بر سانتی متر. در مقایسه با ترکیباتی مانند Cr2O3 دو صدم ثانیه بر سانتی متر.

 

و Mn,Cr) 3O4) پنچ دهم ثانیه بر سانتی متر برای MnCr2O4. و دو صدم ثانیه بر سانتی متر برای Mn1.2 Cr1.8O4 دارد. مقدار مقاومت الکتریکی سطحی کمتر نمونه پوششی در مقایسه با نمونه بدور از پوشش نشان می دهد. که ذرات Y2O3 عوامل مخربی برای هدایت الکتریکی پوشش نیستند و با کاهش نرخ اکسیداسیون نمونه پوشش می شدند. و بهبود چسبندگی پوشش به زیر لایه باعث افزایش هدایت الکتریکی نیز می شوند.

شکل (12) تغییرات مقاومت الکتریکی سطحی نمونه ها بر حسب زمان اکسیداسیون را در هوا در 800 درجه سانتی گراد نشان می دهد. مقدار مقاومت الکتریکی سطحی نمونه در تمام محدوده زمانی با افزایش زمان افزایش می یابد. بعد از 200 ساعت اکسیداسیون، مقدار مقاومت الکتریکی سطحی برای نمونه بدون پوشش برابر 25/9 میلی اهم بر سانتی متر مربع. و برای نمونه مورد پوشش برابر 15/8 میلی اهم بر سانتی متر مربع است. بایستی توجه داشت که مقدار مقاومت الکتتریکی سطحی یک اتصال دهنده فلزی پوشش داده شده.

 

با یک پوشش محافظ تحت تأثیر لایه پوشش و لایه اکسیدی که در فصل مشترک فلز و پوشش. در طی شرایط کاری پیل های سوختی اکسید جامد تشکیل می شود، است. بنابراین یکی از عوامل مهمی که باعث کاهش مقاومت الکتریکی سطحی نمونه پوشش داده شده است. ضخامت کمتر لایه اکسیدی Cr2O3 در این نمونه (حدود 700نانومتر) در مقایسه با نمونه بدون پوشش (حدود دو میکرومتر) است. زیرا این لایه اکسیدی مقاومت الکتریکی بالایی دارد. به طور کلی مقدار مقاومت الکتریکی سطحی کمتر نمونه مورد پوشش نشان می دهد که تأثیر مثبت پوشش اعمالی روی اتصال دهنده فولادی است.

4- نتیجه گیری

1- پوشش کامپوزیتی Co/Y2O3 با چسبندگی خوب روی فولاد زنگ نزن فریتی Crofer 22APU به روش آبکاری الکتریکی با جریان مستقیم تشکیل شد.

2- پوشش اعمالی باعث کاهش نرخ خوردگی فولاد Crofer 22APU. در محدوده 100 تا 500 ساعت اکسیداسیون در هوا در دمای 800 درجه سانتی گراد شد.

3-یک پوسته اکسیدی دو لایه روی نمونه پوشش داده شده با Co/Y2O3. بعد از 500 ساعت اکسیداسیون در هوا در دمای 800 درجه سانتی گراد تشکیل شد. که لایه داخلی آن شامل عناصر کروم و اکسیژن و لایه خارجی آن شامل عناصر کبالت، کروم، منگنز، اکسیژن، آهن و ایتریم بود.

4- تحلیل پراش انرژی پرتو ایکس نشان داد که ضخامت پوسته اکسیدی Cr2O3. در نمونه بدون پوشش حدود سه برابر نمونه دارای پوشش می گردد.

اندازه گیری مقدار مقاومت الکتریکی سطحی نمونه ها بر حسب دما نشان داد که نمونه ها رفتاری مشابه مواد نیمه رسانا دارند. و همواره مقدار مقاومت الکتریکی سطحی نمونه پوشش داده شده کمتر از نمونه بدون پوشش است.

 

فاطمه سعید پور، مرتضی زند رحیمی، هادی ابراهیمی فر.

1- دانشکده مهندسی مواد، مجتمع آموزش عالی فنی و مهندسی اسفراین. 2-دانشکده مهندسی مواد، دانشگاه شهید باهنر کرمان. 3-دانشکده مهندسی مکانیک و مواد، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

مواد پیشرفته در مهندسی، سال 38، شماره 1،بهار 1398

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


:: برچسب‌ها: فولاد CROFER 22APU , بررسی خواص فولاد CROFER 22APU پوشش داده شده , ,



فولاد ابزار گرمکار-فولاد گرمکار
نوشته شده در سه شنبه 1 شهريور 1401
بازدید : 203
نویسنده : جواد دلاکان

 

فولاد گرمکار چیست؟ فولادهای گرمکار محصولاتی آلیاژی هستند که در دمای بالای 316 درجه سانتیگراد مورد استفاده قرار می گیرند.

فولاد ابزار گرمکار

فولاد ابزار گرمکار-فولاد گرمکار

و توانایی حفظ خواص خود در دمای بالا را دارند. این دسته یکی از مهمترین و مقاوم ترین فولاد هستند. که از آنها به عنوان قالب و ابزارها در دمای بالا در صنعت استفاده می شود.

فولاد ابزار گرمکار

فولاد گرمکار همانطور که از نامش پیداست قادر به تحمل سایش و فشار در دمای بالا هستند. این خانواده فولادها به دو دسته تقسیم می شوند. که عنصر اصلی گروه اول مولیبدن و عنصر اصلی گروه دوم تنگستن است. اما کروم، مولیبدن و وانادیوم را می توان از اصلی ترین عناصر موجود در فولاد گرمکار دانست. فولادهای گرمکار مقاومت به سایش بالایی دارند. و زمانی که در دمای بالایی قرار گیرند. هیچگونه نرمی و تغییر شکلی نخواهند داشت.

 

و به دلیل داشتن کروم بالا به اکسایش در دمای بالا نیز مقاومند. فولاد 2344 یکی از فولادهای این دسته است. که با نام فولاد H13 نیز عرضه می شود. از فولاد 2344 در تجهیزات اکستروژن داغ استفاده می شود. و از خواص مناسب آن میتوان به مقاومت در ضربه خوب اشاره کرد. یکی دیگر از فولادهای این دسته فولاد 2365 است که در قالب های پرس کاربرد دارد. و مقاومت به ضربه مناسبی نیز دارد. سومین فولاد این دسته فولاد 2367 است که تفاوت اندکی با فولاد 2365 دارد و تفاوت آنها بیشتر در کروم موجود در آنهاست.

بطور کلی فولادهای ابزار گرم کار، فولادهایی اند که اساساً قادر به مقاومت در برابر سایش تا 540 درجه سانتیگراد. و گرما که در واحدهای تولیدی غالب بوده و فرآیندهایی مانند شکل دهی. برش و پانچ کردن فلزات در دماهای بالا از 480 تا 760 درجه سانتیگراد (1900 تا 1400 درجه فارنهایت) را انجام می دهند.

ترکیبات

این دسته از فولادها به عنوان فولادهی گروه H تعیین می شوند. و دارای 0.35% تا 0.45% کربن، 6% تا 25% کروم، وانادیوم، مولیبدن و تنگستن به عنوان سایر عناصر آلیاژی هستند. از تنگستن به دلیل مقاومت در برابر درجه حرارت بالا. و مقاومت در برابر رشد دانه، در درجه اول در فولادهای ابزار شکل دهی گرم استفاده می شود.

فولادهای گرمکار دارای کربن نسبتاً کم حجم دارای حداکثر چقرمگی و دارای عناصری مثل Co،W،MO. به ترتیب (مولیبدن، تنگستن و کبالت) جهت مقاومت به نرم شدگی در دمای بالا میباشند. افزودن وانادیم مقاومت حرارتی فولاد را افزایش می دهد. اما در کل وانادیم جهت افزایش مقاومت به سایش به این فولادها اضافه می شود.

انواع فولاد گرمکار

فولاد تنگستن دار

سه فولاد 1.2542 -1.2567-1.2581 دارای تنگستن هستند. تنگستن سختی پذیری را افزایش می دهد. و همچنین مقاومت به سایش را نیز بالا می برد. تنگستن مقاومت گرمایی فولاد را افزایش می دهد. مقاومت به سایش مناسب این فولاد به علت وجود عنصر کروم است. این خاصیت در دمای بالا نیز در فولاهای گرمکار وجود دارد. فولادهای تنگستن دار به دلیل چقرمگی پایین موارد استفاده محدودی دارد.

فولاد ابزار گرمکار

فولاد مولیبدن دار

سه فولاد 1.2344، 1.2767،1.2714 در دسته فولادهای مولیبدن دار در فولادهای گرم کار است. مولیبدن ساختار ریزدانه سازی فولاد را بهبود می بخشد. و مقاومت حرارتی آن را افزایش می دهد. این عنصر خواص زیر را در فولاد افزایش می دهد.

-قابلیت جوشکاری

-مقاومت تسلیم

-مقاومت نهایی

-و در نهایت مقاومت به شوک الکتریکی

فولاد 2344

فولاد 1.2344 از پرکاربردترین و مهمترین فولاده در خانواده گرمکار است. که آن را با فولاد H13 و 40CrMoV5 نیز می شناسند. از خواص آن می توان به مقاومت به ضربه خوب، ماشینکاری، مقاومت بالا نسبت به شوک حرارتی و سختی پذیری مناسب اشاره کرد. که فولاد 2344 را برای اکستروژن داغ ابزارها و قالب های مورد استفاده برای تولید قطعات فلزی مناسب کرده است. مقاومت به سایش این فولاد هم به دلیل وجود وانادیم در ترکیبات آن است. از کاربردهای دیگر آن میتوان به قالب های پتک کاری. قالب های پلاستیک، تجهیزات اکستروژن داغ، مقاطع توخالی، پیچ و مهره و بولت را نام برد.

فولاد ابزار گرمکار

از کاربردهای دیگر این فولاد می توان به قالب های ریختگری روی، منیزیم و آلومینیم اشاره نمود.

تولیدکنندکان معروف و مهم این نوع فولاد

-BOHLER اتریش

-ASSAB سوئد

-DSS اوکراین

-SMART STEEL سوئیس

فولاد 2343

فولاد 1.2343 یا H11 فولادی نزدیک به فولاد 2344 است. و تفاوت آن ها به دو عنصر آلیاژی محدود می شود. این تفاوت در کربن بسیار ناچیز ولی در وانادیوم زیاد است. H11 نسبت به H13 وانادیم بیشتری دارد.

فولاد 2714

فولاد 1.2714 از ارزان ترین و پرکاربردترین فولادهاست. گرمکار 2714 در سایر استانداردها با نام فولاد W500، فولاد L6 و در استاندارد دین آلمان با نام 55NICrMoV7 نیز معرفی میشود. برای ساخت قالب ها به خصوص قالب های بسیار بزرگ از فولاد 2714 استفاده می شود. در خانواده فولادهای گرمکار دو دسته وجود دارد. که به فولادهای مولیبدن دار و فولادهای تنگستن دار تقسیم بندی می شوند و فولاده 1.2714 در دسته فولادهای مولیدن دار قرار می گیرد. برخی از این فولاد را به دلیل استفاده در قالب های پلاستیک همراه با فولاد 1.2738 فولاد قالب پلاستیک نیز می نامند. خواصی مانند چقرمگی و سختی پذیری بسیار خوب باعث شده. تا بتوان از مقاومت سایشی متوسط یا حتی متوسط رو به پایین این فولادها بتوان چشم پوشی کرد.

فولاد 2365

فولاد 1.2365 به علت مقاوم بودن در برابر ضربه در قالب های پرس کاربرد دارد. گرمکار 1.2365 در خانواده فولادهای گرمکار در دسته فولادهای دارای مولیبدن قرار می گیرد. این فولاد در استاندارد AISI آمریکا با نام H10 شناخته می شود.

فولاد 2367

فولاد گرمکار 1.2367 با فولاد 1.2365 تفاوت ناچیزی دارد. و تفاوت آنها بیشتر در میزان کروم موجود در آنهاست. از فولاد 1.2367 برای ساختن قالب و به ویژه قالب های بسیار بزرگ، قالب های اکستروژن میله و لوله در مقاطعع بزرگ بکارگیری میشود. دو عنصر مولیبدن و کروم از عناصر پایه و این فولاد و درصد آن ها از سایر عناصر بیشتر است.

فولاد 2767

فولاد 1.2767 که در خانواده فولادهای مولیبدن دار قرار می گیرد. دارای مشخصه 45NiCrMo16 در استاندارد DIN آلمان است. و در قالب های قاشق و چنگال مورد استفاده قرار می گیرد. این فولاد از جمله فولادهای دو منظوره گرمکار و سردکار می باشد. که کاربردهای ویژه ای را موجب می شود.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام

 


:: برچسب‌ها: فولاد ابزار گرمکار , فولاد گرمکار , فولاد تنگستن دار , فولاد مولیبدن دار , فولاد مقاوم به گرما , ,



بازدید : 193
نویسنده : جواد دلاکان

ورق مخزنی – حرارتی A285-فولاد حرارتی- فولاد آتشخوار – فولاد حرارتی – فولاد مخزنی – ورق مخازن ذخیره سازی- فولاد کشتی سازی

ورق مخزنی- ورق حرارتی- ورق A285 -ورق آتشخوار- فولاد آتشخوار

ورق‌های حرارتی همانطور که که از نامشان مشخص میباشد.، به دلیل مقاومت بالای آنها که در مقابل حرارت خود نشان میدهند. شناخته میشوند. در نتیجه این نوع فلز آلیاژی قادر است . مایعات و گازهای با دمای بالا را از خود عبور دهند. ضمناً، این نوع از ورق‌ها، بعلت خصوصیتهای منحصر به فردی که دارا هستند. در مخازن تحت فشار مورد استفاده قرار می‌گیرند. ورق‌های A516-A283– A285 از با اهمیت ترین آلیاژهای آتشخوار یا مخزنی محسوب میشوند.

A285

ASTM A285 گونه ایی از فولاد ساده کربنی است. که برای تجهیزات مخازن تحت فشار جوش داده شده بعنوان دیگ بخار- مخزن ذخیره‌سازی- مبدل‌های حرارتی و … در نظر گرفته شده است . که دارای ۳ نوع گرید فولادی (گرید A، B، C ) است. مقاومت کششی آن نیز از ۳۱۰ الی ۵۱۵ مگاپاسکال است. بطور معمول صفحه فولادیASTM A285 به صورت نورد شده تحویل داده می‌شود. A285 از با اهمیت تری آلیاژهای آتشخوار یا مخزنی محسوب میگردد. فولاد ASTM A285 با اشکالی چون : ورق‌های فولادی- کویل فولادی،-لوله فولادی تولید میشود .این فولاد از قابلیت جوش‌پذیری مطلوبی برای جوشکاری ذوبی در تجهیزات مخازن تحت فشار برخوردار است. بطور کلی-ضخامت حداکثر این نوع از ورق‌ها به 50mm محدود است . تا از خاصیت مکانیکی آن اطمینان حاصل گردد.

خصوصیات ورق مخزنی – حرارتی A285

مقاوم در برابر خوردگی – ابعاد دقیق – ضد زنگ – فشار و درجه حرارت بالا را تحمل میکند.- توزیع عالی تنش

کاربرد ورق مخزنی

• مخازن تحت فشار راکتور هسته‌ای
• دیگ بخار و مبدل حرارتی
• توربین‌های گازی و بخار
• نیروگاه‌های حرارتی
• نوار نقاله کشویی
• صنایع شیمیایی

آزمایش تست مخرب و غیرمخرب ورق مخزنی – حرارتی A285

آزمون‌هایی که روی این ورق‌ها می‌تواند انجام می‌شود:
• بررسی خواص مکانیکی مانند کشش
• آنالیزشیمیایی-تجزیه و تحلیل طیف
• آزمایش اشعه ایکس
• تجزیه و تحلیل هیدرواستاتیک

ترکیب شیمیایی ورق مخزنی این نوع ورق

ترکیب شیمیایی ورق مخزنی A285 به شرح ذیل است

ASTM A285 Chemical Composition Grade A Grade B Grade C
Carbon, max ۰٫۱۷ ۰٫۲۲ ۰٫۲۸
Manganese, max ۰٫۹۰ ۰٫۹۰ ۰٫۹۰
Phosphorus, max ۰٫۰۳۵ ۰٫۰۳۵ ۰٫۰۳۵
Sulphur, max ۰٫۰۳۵ ۰٫۰۳۵ ۰٫۰۳۵

خواص مکانیکی این نوع ورق

خواص مکانیکی ورق حرارتی A285 به شرح ذیل است

Tensile strength, [MPa] Yield strength, min, [MPa] Elongation in under [50mm], min, %
۳۸۰-۵۱۵ ۲۰۵ ۲۷

فولادی که این مشخصات را داشته باشد، یک محصول با مقاومت کششی ۶۰ ksi است که از نظر خصوصیات فیزیکی و مکانیکی شبیه به فولاد کربن ۱۰۳۰ ساده است.

مشخصات این نوع ورق

مشخصات ورق‌های A285 طبق استاندارد به شرح ذیل است

Standard AISI, ASTM, BS, DIN, GB, JIS
Thickness ۳ – ۳۰۰ mm
Width ۱۰۰۰ – ۴۰۰۰ mm
Length ۱۰۰۰ -۱۲۰۰۰ mm

این نوع ورق به عنوان ماده قابل جوشکاری در ساخت مخازن تحت فشار و دیگ‌های بخار با استفاده از جوشکاری ذوبی – یعنی اتصال مواد با ذوب آنها به یکدیگر- استفاده می‌شود. برای اطمینان از استحکام داخلی این نوع از ورق‌ها با ضخامت حداکثر 50mm در کلیه گریدها ارائه شده است. از آنجا که ASTM A285 استحکام کششی بالایی را نشان نمی دهد.معمولاً در ساخت مخازن ذخیره و مخازن کنترل شده با فشار کم استفاده می‌شود.

A285 -ورق مخزنی – حرارتی-فولاد حرارتی- فولاد آتشخوار

فولاد آلیاژی چیست

فولاد آلیاژی – نام دیگر این نوع فلز (به انگلیسی: Alloy steel) فولادی است که با عناصر گوناگون بصورت آلیاژ درآمده است. برای بهبود ویژگی‌های مکانیکی این فلز میتوان از ۱٫۰ تا ۵۰٪ از وزن آن را آلیاژ کرد. آلیاژهای فولاد دو دسته‌اند: فولاد کم‌آلیاژ و فولاد پُرآلیاژ. تفاوت میان این دو، می‌توان گفت، قراردادی است: اسمیت و هاشمی تفاوت این دو را در ۴٫۰٪ دانسته‌اند در حالی که گروه دگرمو آن را در ۸٫۰٪ می‌دانند. در حالت کلی وقتی صحبت از «آلیاژ فولاد» می‌شود منظور فولاد کم‌آلیاژ است.

خود این فلز در واقع نوعی آلیاژ است. اما تمام گونه‌های این نوع فلز را آلیاژ نمی‌خوانند. ساده‌ترین نوع فولاد که تقریباً می‌توان گفت آهن است (نزدیک به ۹۹٪) خود با عنصر کربن آلیاژ شده‌است .

از ترکیب عناصر مختلفت با فولاد و آلیاژسازی، برخی ویژگی‌های فولاد کربن مانند مقاومت-سختی – چقرمگی -سایش – سخت شدگی-سختی در دمای بالا.به گونهٔ درخور توجهی بهبود می‌یابد. برای دستیابی به بعضی از این ویژگی‌ها باید عملیات حرارتی روی فلز انجام شود.

ویژگی‌های یادشده در بالا در کاربردهای ویژه‌ای چون پرّه‌های توربین ،موتور جت ، فضاپیماها و رآکتورهای هسته ای ، بسیار مورد نیاز است. به دلیل ویژگی‌های فرومغناطیس آهن، بعضی آلیاژهای فولاد و پاسخی که این آلیاژها در محیط مغناطیسی می‌دهند، اهمیت ویژه‌ای پیدا می‌کند. در موتورهای الکترونیکی و ترانسفورماتورها نیز چنین است.

فولاد سردکار

و به عنوان یک فولاد سردکار و پرآلیاژ شناخته می شود. که میزان سختی آن بیشتر از فولاد SPK است .و همین باعث شده در صنایع کاربرد زیادی داشته باشد. این مدل فولاد کاربرد فراوانی دارد که در زیر با آن ها اشاره می کنیم:. برخی از کاربردها تیغه های فولادی برای برش محصولات پشمی قالب های دوره زنی .و سوراخ کاری وسایل خان کشی قالب های کله زنی سرد قالب های ریختگی تحت فشار آلومنیوم قالب های تولید لوله ‌قالب های خان کشی گیج ها ‌ابزارهای چوب بری تحت تنش بالا و بدون نیاز. به چقرمگی خیلی زیاد ابزار پرس در صنایع سرامیک و داروسازی پانچ ها، برقوها نازل های سند بلاست تیغه های برش صفحات نوارهای فولادی تا ضخامت 3 میلیمتر.

شرکت خشکه و فولاد پایتخت صنعتگران عزیز، افتخار داریم که سالها تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام

 


:: برچسب‌ها: A285 , ورق مخزنی , ورق حرارتی , فولاد حرارتی , فولاد آتشخوار , فولاد کشتی سازی , ,



نوشته شده در پنج شنبه 27 مرداد 1401
بازدید : 192
نویسنده : جواد دلاکان

 

فولاد A516- ورق A516 -A516 -فولاد a516 گرید 60

بررسی ریزساختاری و شکست نگاری فولاد عملیات حرارتی شده ی ASTM A516 Gr 60 تحت بارگذاری دینمامیکی

ورق a516-فولاد a516-بررسی ریزساختاری و شکست نگاری فولاد عملیات حرارتی  A516

ورق A516

در پژوهش حاضر ریزساختار و سطح شکست ضربه فولاد ساده کربنی و میکروآلیاژی ASTM 516 Gr 70. تولید شده با نورد گرم که سیکل عملیات حرارتی کوئنچ و تمپر بر روی آن انجام شده، بررسی شده است. نمونه ها به مدت 30 دقیقه در دمای 890 درجه سانتی گراد در حمام نمک آستنیته شده. و بلافاصله درون آب با دمای 25 درجه سانتی گراد کوئنچ شدند.

ورق a516-فولاد a516-بررسی ریزساختاری و شکست نگاری فولاد عملیات حرارتی  A516

سپس نمونه ها در دمای 200 – 400 و 60 درجه سانتی گراد در حمام نمک. به مدت 45 دقیقه حرارت داده شده و تمپر شدند. جهت بررسی مقاومت در برابر بارهای ناگهانی دینامیکی (نرخ کربن زیاد). نمونه ها تحت آزمون ضربه چارپی در دماهای 25+، 25- و 75- درجه سانتی گراد قرار گرفتند. با تحلیل ریزساختار نمونه ها مشخص شد که با افزایش دمای تمپر. مورفولوژی مارتنزیت تمپر شده خشن تر گردیده. و ساختار به حال تعادلی (آنیل شده) نزدیک تر شده و انرژی ضربه افزایش و سختی کاهش می یابد. بهترین نتایج در دمای تمپر 600 درجه سانتی گراد به دست آمده است.

ورق a516

فولاد های ساده کربنی و میکروآلیاژی از خانواده فولادهای کم آلیاژی استحکام بالا با مقادیر محدودی عناصر کاربید ساز قوی نظیر Nb، Ti و V جهت کنترل رشد دانه های آستنیت می باشند. که از جمله آن فولاد ASTM A516 Gr70 می باشد. در حال حاضر ورق فولادی A516 کاربرد بسیار زیادی در ساخت بدنۀ مخازن تحت فشار دارد. که علت آن دارا بودن همزمان استحکام و قابلیت انعطاف مطلوب و قابلیت جذب انرژی ضربه در دمای پایین است. این خانوادۀ فولادهای A516، ورق های فولادی استحکام بالای کوئنچ – تمپر را تحت پوشش قرار می دهند. که برای کاربرد در بویلرهای جوشکاری شده و دیگر مخازن تحت فشار بسیار مورد استفاده هستند.

این مشخصه شامل تعداد زیادی از عیارهاست که توسط تولید کننده های مختلفی ساخته می شوند. اما همۀ عیارها دارای خواص مکانیکی و ویژگی های کلی یکسانی هستند.ماکزیمم ضخامت ورق هایی که تحت این مشخصات تولید می گردند به صورت جدول 1 است. یکی از روش های مقرون به صرفه. و مرسوم برای بهبود خواص مکانیکی این فولادهای تولید شده با روش نورد گرم. عملیات حرارتی می باشد. در این فولادها در صورت اضافه نمودن عناصر آلیاژی معمولاً سرعت رشد دانه. به علت اثر کششی اتم محلول عناصر آلیاژی جدایش یافته به داخل مرزدانه های آستنیت کاهش می یابد.

ورق a516

کنترل رشد دانه های آستنیت در طی پروسه نورد گرم و نهایتاً عملیات حرارتی. بسته به نوع مقدار عناصر کاربیدسازی قوی Nb،Ti و V دارد. تحقیقات نسان می دهد که تشکیل کاربیدها. نیتریدها و کربونیتریدهای عناصر ذکر شده (ذرات فاز ثانویه) موجب قفل شدن مرز دانه ها می گردد. و این کار به قدری مؤثر می باشد. که باعث می شود، در دماهای پایین آستنیته کردن، هیچ رشد دانه ای اتفاق نیفتد.

حال در این پژوهش، با اتکا و توجه به موارد ذکر شده هدف این است. که با اجرای سیکل عملیات حرارتی کوئنچ و تمپر فولاد ASTM A516 Gr70. در حمام نمک مذاب خنثی با دماهای 200 – 400 و 600 درجه سانتی گراد. تأثیر دمای تمپر در یک زمان تمپر ثابت در فولاد مذکور بر روی انرژی ضربه (بارگذاری دینامیکی). برای دماهای آزمون 25+ ، 25- و 75 – درجه سانتی گراد که در گذشته کمتر مورد بررسی قرار گرفته است. در کنار تحلیل ریزساختار و سطوح شکست ضربه مورد ارزیابی قرار گیرد و بهترین نتیجه استخراج گردد.

روش تحقیق

در این پژوهش فولاد ساده کربنی و میکرو آلیاژی ASTM A516 Gr70 مورد تحقیق و بررسی قرار گرفت. ترکیب شیمیایی این فولاد که با رعایت استاندارد محیطی ASTM E406-81(2008) انجام شد در جدول 2 آمده است. این فولاد طی مراحل ذوب در کورۀ قوس الکتریکی به صورت تختال ریخته گری شد. سپس این تختال طی انجام یک پروسه نورد گرم به ورق با ابعاد (25000*2000*25) میلی متر تبدیل گردید. سپس مقداری از سطح ورق نورد شده جدا کرده. و نمونه های استاندارد ضربه به صورت عمود بر راستای نورد از سطح ورق انتخاب شده. و توسط اره ی نواری برش داده شدند.

جهت عملیات حرارتی، نمونه ها با نرخ گرمایشی A C/S. تا دمای 620 درجه سانتی گراد به مدت 20 دقیقه پیشگرم شدند. سپس نمونه ها با همان نرخ حرارتی تا دمای 890 درجه سانتی گراد. به مدت زمان 25 دقیقه در حمام نمک مذاب. آستنیته شده و در آب کوئنچ شدند. در نهایت عملیات تمپر در حمام نمک مذاب. در دماهای 200، 400 و 600 درجه سانتی گراد به مدت 45 دقیقه انجام شد.

ورق a516

آزمون ضربه به منظور ارزیابی مقاومت به شکست ضربه ای (بارگذاری دینامیکی ناگهانی). این ورق فولادی و آنالیز تصاویر سطوح شکست ضربه آن جهت تعیین مد شکست. با میکروسکوپ الکترونی روبشی انجام گردید. آزمون ضربه به دور روش شارپی و ایزود انجام می گردد. که در این تحقیق از روش شارپی استفاده شد. و نمونه سازی آن هم بر اساس استاندارد ASTM E23-07a با ابعاد (55*10*10) میلی متر انجام گرفت.

از بررسی متالوگرافی جهت بررسی ریزساختار و ارزیابی کیفی این ورق فولادی در شرایط کوئنچ و تمپر. در دماهای 200 – 400 و 600 درجه سانتی گراد استفاده گردید. نمونه سازی و بررسی ریزساختار طبق استاندارد انجام شد. محلول اچ مورد استفاده نایتال 2% بوده و میکروسکوپ نوری مورد استفاده Olympus مدل PMG3 بوده است. عملیات سختی سنجی با استفاده از دستگاه EMCO TEST با مدل MAU 750. بر روی نمونه های ضربه عملیات شده و پالیش شده. در واحد برینل با نیروی اولیه 10kg و نیروی نهایی 187/5kg صورت گرفت. همچنین آنالیز عنصری (EDS) از سطوح شکست ضربه همراه بار بررسی های شکست نگاری. با تصویر الکترون های برگشتی میکروسکوپ الکترونی روبشی مدل VEGA/TESCAN انجام شد.

نتایج بحث

تأثیر عملیات کوئنچ و تمپر بر خواص ضربه ای، سختی و ریزساختار

نتایج حاصل از آزمون های ضربه و سختی نمونه های کوئنچ و تمپر شده. در جدول 3 نشان داده شده است. نتایج حاکی از افزایش انرژی ضربه متناسب با افزایش دمای تمپر است. به طوری که انرژی ضربه از 10/1j در نمونه کوئنچ و تمپر شده. در دمای 200 درجه سانتی گراد به 174/4j در نمونه کوئنچ و تمپر شده. در دمای 600 درجه سانتی گراد افزایش می یابد.

(در دمای آزمون 25+ درجه سانتی گراد). احتمالاً علت پایین بودن انرژی ضربه در دمای تمپر 200 درجه سانتی گراد. بالا بودن تنش های پسماند ناشی از گرادیان حرارتی. در عملیات کوئنچ و بالا بودن میزان تتراگونالیته مارتنزیت لایه ای ایجاد شده است. که باعث افزایش میزان جوانه زنی. و رشد ترک های میکروسکوپی و کاهش انرژی ضربه نمونه های کوئنچ و تمپر شده. در دمای 200 درجه سانتی گراد تا 10/1j شده است. شکل (الف) ریزساختار نمونه کوئنچ و تمپر شده در دمای 200 درجه سانتی گراد که شامل مارتنزیت تمپر شده. و مقادیر جزئی فریت است را نشان می دهد.

ورق a516

با افزایش دمای تمپر به 400 درجه سانتی گراد مشخص می شد. که انرژی ضربه این شرایط در دمای آزمون 25+ درجه سانتی گراد برابر 17/3j می باشد. و در مقایسه با انرژی ضربه نمونه های تمپر 200 درجه سانتی گراد تغییر محسوسی ایجاد نشده است. با توجه به اینکه منطقه تردی حرارتی برای این نوع فولادها محدوده ی دمایی 575 – 375 درجه سانتی گراد میباشد. احتمالاً تردی تمپر در این دمای تمپر رخ داده است.

و تصاویر شکست نیز گواه این مورد هستند. این موضوع میتواند ناشی از چند عامل باشد؛ چنانچه مشاهده می شود. عناصر کاربیدزا (Ti،Nb و V) در دمای تمپر پایین نقش زیادی ندارند. و عنصر Si به طور قابل ملاحظه ای مقاومت به نرم شدن در حین تمپر را افزایش می دهد. مطالعات ریزساختاری نشان می دهد که علت این امر جلوگیری از استحاله کاربید انتقالی به سمنتیت است. عنصر Mn نیز در دماهای پایین تمپر اثر ناچیزی بر مقاومت به نرم شدن دارد. اما در دماهای بالاتر اثر آن تشدید می شود و دلیل آن مشارکت Mn در تشکیل کاربیدها در دمای بالاست.

ورق a516

این عنصر دارای ضریب نفوذ کم بوده و بنابراین درشت شدن کاربیدها را به تعویق می اندازد. حضور توأم Mn و Cr قابلیت تردی بازپخت را افزایش می دهد. اما اگر مقدار Mn در فولاد کمتر از 0/5% باشد فولاد ترد خواهد شد. علاوه بر عنصار آلیاژی ناخالصی ها نیز در بروز این نوع تردی نقش مؤثری دارند. در فولاد ASTM A516 Gr70 حضور عناصر آلیاژی Mn،Gr،Si و Ni تجمع ناخالصی ها از جمله S و P را در مرزدانه های آستنیت تقویت می کند. این تجمع به صورت نوار باریک و پیوسته در امتداد مرزدانه خواهد بود. و همراه با دیگر ناخالصی های به دام افتاده از جمله اکسید آلومینیوم. ( آلومینیوم برای اکسیژن زدایی به مذاب فولاد اضافه می شود) باعث افت تافنس می گردد.

مرحلۀ بعدی، سیکل عملیات حرارتی کوئنچ و تمپر در دمای 600 درجه سانتی گراد می باشد. انرژی ضربه حاصل شده در این دمای تمپر. نسبت به دمای تمپر 200 و 400 درجه سانتی گراد افزایش 17/27% داشته است. نمودار تغییرات انرژی ضربه فولاد A516 بر حسب دمای بازپخت که در منابع مختلف موجود نیست. و در حقیقت هدف اصلی پروژه است در شکل 2 ترسیم شده است.

متوسط نتایج تست سختی برای دماهای مختلف تمپر نیز در جدول 3 ارائه شده است. در این جدول مشاهده می شود که انرژی ضربه و سختی کاملاً وابسته به دمای بازپخت است.

ورق a516

تفسیر تصاویر متالوگرافی نشان می دهد که با افزایش دمای بازپخت مورفولوژی مارتنزیت بازپخت شده. خشن تر شده و ساختار به حالت تعادلی (آنیل) نزدیک شده است. و مقدار فریت از سطح به مغز نمونه ها در تمامی دماهای تمپر. خصوصاً دمای تمپر 600 درجه سانتی گراد بیشتر شده. و به نظر می رسد که این تغییر عامل اصلی افزایش انرژی ضربه و کاهش سختی بوده است. از طرفی با توجه به درصدهای نسبتاً کم عناصر آلیاژی کاربید زا اثری از سختی ثانویه. در این فولاد مشاهده نشده است. تصاویر سطح شکست نمونه های ضربه در شکل 3 نشان داده شده است.

سطح شکست نمونه های کوئنچ و تمپر 200 و 400 درجه سانتی گراد. شامل صفحات کلیواژ در جهات کریستالی مشخص می باشد. هرچند آثاری از وجود دیمپل های بسیار ریز مشاهده شده است. که حاکی از شکست نیمه ترد است.

 

وجود دیمپل های ریز و درشت در نمونه های ضربه کوئنچ. و تمپر 600 درجه سانتی گراد نیز حاکی از شکست کاملاً نرم می باشد. و همچنین وجود ناخالصی ها روی مرزدانه علت جوانه زنی و مشاهده دیمپل های مرزدانه ای است. که شکست نرم را تأیید می نمایند. محل جوانه زنی دیمپل ها ناخالصی های سفید رنگی است که در بعضی از فرورفتگی های دیمپلی مشاهده شده است.

شکل 4 آنالیز عنصری (EDS) دو جزء از ناخالصی های موجود در دیمپل های مشاهده شده است. که حاکی از وجود درصد قابل توجهی از عناصر منگنز، آلومینیوم، گوگرد و آهن می باشد. لذا ناخالصی های سولفید منگنز و آهن و اکسید آلومینیوم مهم ترین مکان جوانه زنی دیمپلی. و ناپیوستگی زمینه مارتنزیتی با ناخالصی ها به حساب می آیند.

نتیجه گیری

1- وجود عناصر آلیاژی نیوبیوم و تیتانیم. عامل به تأخیر انداختن رشد دانه های آستنیت اولیه تا حدود 1000 درجه سانتی گراد. از طریق تشکیل رسوبات کاربونیتریدی و نیتریدی و قفل کردن مرزدانه ها در عملیات آستنیته کردن این فولاد است.

2- عامل پایین بودن انرژی ضربه فولاد کوئنچ و تمپر شده. در دمای 200 درجه سانتی گراد بالا بودن تنش پسماند. ناشی از گرادیان حرارتی در حین کوئنچ و همچنین افزایش تتراگونالیته مارتنزیت لایه ای حاصل شده است.

3- فولاد مورد پژوهش در دمای تمپر 400 درجه سانتی گراد دچار تردی تمپر شده. و این می تواند ناشی از تجمع ناخالصی ها از جمله P و S در مرز دانه های آستنیت باشد. که با حضور عناصر آلیاژی Mn،Mo،Si و Ni تقویت می شود. نتایج حاصل از آزمون ضربه (انرژی ضربه) و نوع شکست کلیواژ. (رخ برگی) نیز این رخداد را به اثبات می رساند.

ورق a516

4- افزایش دمای تمپر باعث افزایش انرژی ضربه ای و کاهش مقدار سختی و گرایش نوع شکست از حالت تردد. و رخ برگی به سمت نیمه ترد و سپس نرم و دیمپلی. (تمپر شده در دمای 600 درجه سانتی گراد) است.

5- ریزساختار فولاد طی عملیات حرارتی کوئنچ و تمپر، مارتنزیت تمپر شده همراه با مقادیر جزئی فریت می باشد. که با افزایش دمای تمپر از 200 به 400 و سپس 600 درجه سانتی گراد. مورفولوژی مارتنزیت تمپر شده خشن تر شده. و با افزایش مقدار جزئی فریت از سطح به مرکز ساختار به حالت تعادلی (آنیل) نزدیک شده است.

6- بیشترین انرژی ضربه (174j) بهترین ریزساختار (مارتنزیت تمپر شده خشن با مقادیر جزئی فریت). و بهترین مد شکست (نرم و دیمپلی) در دمای تمپر 600 درجه سانتی گراد به دست آمده است.

7- آنالیز نقطه ای انجام شده (EDS) با میکروسکوپ الکترونی روبشی بر روی آخال ها نشان می دهد. که محل جوانه زنی و رشد دیمپل های سطح شکست نمونه های ضربه. ترکیبات سولفیدی آهن و منگنز و اکسید آلومینیوم می باشد.

ورق a516

ورق a516
ورق a516

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام


:: برچسب‌ها: فولاد a516 , بررسی ریزساختاری و شکست نگاری فولاد عملیات حرارتی A516 , ورق A516 , A516 , فولاد A516 گرید 60 , ,



تأثیر عناصر آلیاژی روی فولاد
نوشته شده در سه شنبه 25 مرداد 1401
بازدید : 193
نویسنده : جواد دلاکان

 

تأثیر عناصر آلیاژی روی فولاد

تأثیر عناصر آلیاژی

تأثیر عناصر آلیاژی روی فولاد

1- کربن (C)

کربن مهمترین و مؤثرترین عنصر آلیاژی در فولادها می باشد. و بالاترین تأثیر را در ساختار آن دارد. هر فولاد آلیاژ شده علاوه بر کربن عناصر آلیاژی دیگری نظیر سیلیسیم، منگنز، فسفر و گوگرد را به همراه خواهد داشت. بطوریکه این عناصر به شکلی ناخواسته به هنگام فرآیند تولید در فولاد باقی خواهد ماند. با افزایش میزان کربن استحکام، سختی پذیری فولاد بیشتر میشود. اما چکش خواری و قابلیت جوشکاری و ماشینکاری (با استفاده از ماشینهای برش) کاهش می یابد. این عنصر عملاً هیچ تأثیری بر مقاومت خوردگی در آب، اسید و گازهای گرم ندارد.

2- کلسیم (Ca)

در ترکیب با سیلیسیم به شکل سیلیسیم – کلسیم در اکسیژن زدایی فولادها به کار می رود. کلسیم، مقاومت در برابر پوسته شدن مواد هادی حرارت را افزایش می دهد.

3- سدیم (Na)

این عنصر یک اکسیژن زدای مسلم و نیرومند است. و گوگرد زدایی را نیز سرعت و شتاب می دهد. به همین دلیل یک عنصر پالایشی در فولادها محسوب می گردد. وجود این عنصر در فولادهای پر آلیاژ باعث گستردگی دامنه فرآیند شکل گیری گرم می شود. همچنین مقاومت فولادهای نسوز را در برابر پوسته شدن بهبود می بخشد. آلیاژهای آهن – سدیم با مقادیر تقریبی 70% سدیم دارای خواص آتش دهندگی (مانند سنگ چخماق) هستند. و در تولید چدنهایی با گرافیت کروی مورد استفاده قرار می گیرد.

4- کبالت (Co)

کبالت هیچ کاربیدی را تشکیل نمی دهد در دمای بالا از رشد دانه ها جلوگیری می کند. مقاومت در برابر تنشهای ناشی از بازپخت را افزایش می دهد. و موجب استحکام مکانیکی فولاد در برابر دمای بالا می شود. لذا به عنوان یک عنصر آلیاژی در فولادهای ابزاری گرم کار و فولادهای مقاوم در برابر خزش و فولادهای دیرگداز به کار می رود. وجود کبالت شکل گیری گرافیت کروی را تسریع می کند. در کمیت ها و مقادیر بالا، پایداری مغناطیسی و نیروی مغناطیسی زدایی و هدایت حرارتی را افزایش می دهد. لذا به عنوان یک عنصر پایه در آلیاژها و فولادهای مغناطیسی دایم مرغوب به کار می رود.

5- کروم (Cr)

وجود عنصر فوق باعث سختی پذیری فولاد در هوا و روغن می باشد. کروم با کاهش سرعت خنک سازی بحرانی به وسیله شکل دادن ساختار مارتنزیتی، قابلیت سخت کاری را افزایش می دهد. بنابراین سبب بهبود حساسیت های سخت کاری و بازپخت می شود. اما در هر صورت چقرمگی کاهش می یابد. و از انعطاف پذیری یا شکل پذیری فولاد به مقدار کمی کاسته می گردد. با افزایش کروم در فولادهای ساده کروم دار جوش پذیری کاهش می یابد. با اضافه نمودن هر واحد (1%) کروم به عنوان یک عنصر کاربید ساز استحکام کششی فولاد. به میزان 100-80 نیوتن بر میلیمتر مربع افزایش می یابد.

 

کروم به عنوان یک عنصر کاربید ساز بکار برده می شود. کاربیدهای این عنصر کیفیت نگهداری لبه ها و مقاومت سایشی را افزایش می دهد. کروم موجب مقاومت فولاد در دماهای بالا می شود. با افزایش کروم مقاومت در برابر پوسته شدن فولادها نیز بهبود می یابد. به طور تقریبی حداقل 13% کروم مورد نیاز است تا مقاومت خوردگی فولادها نیز بهبود یابد. این عنصر سبب کاهش هدایت الکتریکی و حرارتی می شود. و انبساط حرارتی را نیز کاهش می دهد. با افزایش همزان میزان کربن و کروم تا میزان 3% پایداری مغناطیسی افزایش می یابد.

تأثیر عناصر آلیاژی

6- مس (Cu)

مس به عنوان یک فلز آلیاژی به تعداد بسیار کمی از فولادها اضافه می شود. زیرا این فلز به زیر لایه های سطحی فولاد تمرکز یافته. و در فرآیند شکل دهی گرم با نفوذ به مرز دانه ها، حساسیت سطحی را در فولادها بوجود می آورد. لذا به عنوان یک فلز مخرب در فولادها محسوب می گردد. به واسطه حضور مس نقطه تسلیم و نسبت نقطه تسلیم به استحکام نهایی افزایش می یابد. این عنصر در مقادیر بالای 30% موجب سختی رسوبی می شود. و بدین ترتیب سختی پذیری نیز بهبود می یابد. اما قابلیت جوشکاری به واسطه حضور مس تغییری نمی کند. در فولادهای آلیاژی ساده و پر آلیاژ مقاومت جوی به میزان کافی بهبود می یابد. مقادیر بالاتر از 1% مس موجب بهبود مقاومت در برابر واکنشهای اسید کلریدریک و اسید سولفوریک می شود.

7- هیدروژزن (H)

هیدروژن یک عنصر مخرب در فولاد تلقی می گردد. زیرا بدون آنکه نقطه تسلیم و استحکام کششی فولاد را افزایش دهد موجب تردی و شکنندگی فولاد می گردد. انعطاف پذیری را کم کرده و باعث کاهش سطح مقطع می باشد. هیدروژن سبب پوسته شدن ناخواسته سطح فولاد میگردد. و ایجاد خطوط رنگین ناشی از ترکیبات را شتاب می دهد. هیدروژن اتمی ایجاد شده در خلال فرایند اکسیژن زدایی در فولاد نفوذ کرده و حفره هایی را تشکیل می دهد. هیروژن مرطوب در دمای بالا باعث کربن زدایی فولاد می باشد.

تأثیر عناصر آلیاژی

8- منگنز (Mn)

یک اکسیژن زداست. این عنصر با گوگرد ترکیب شده و تشکیل سولفید منگنز می دهد. بر همین اساس اثرات نامطلوب اکسید آهن را از بین می برد. وجود این عنصر در فولادهای خوش تراش بسیار مهم است. زیر خط قرمز شکنندگی را کاهش می دهد. منگنز سرعت خنک شدن بحرانی را نیز به شدت کم می کند. به همین دلیل سختی پذیری و نقطه تسلیم و استحکام نهایی را افزایش می دهد. با اضافه نمودن منگنز تأثیرات مطلوبی در قابلیت های آهنگری و جوشکاری فولاد بوجود می آید.

 

و بطور قابل ملاحظه ای عمق سختی فولادها را بیشتر می کند. اگر سطح این نوع فولادها در معرض تنشهای ضربه ای قرار گیرد به مقدار بسیار زیادی کارسخت خواهد شد. در حالیکه مغر فولاد چقرمگی اولیه خود را حفظ میکند. لذا این گروه از فولادها تحت تأثیر نیروهای ضربه ای (کارسختی) مقاومت سایشی مطلوبی از خود نشان می دهند. با افزایش منگنز ضریب انبساط حرارتی افزایش یافته در حالیکه هدایت الکتریکی کاهش می یابد. منگنز باعث افزایش خاصیت فنری می شود.

 

9- مولیبدن (Mo)

این عنصر به طور معمول با عناصر دیگر آلیاژ می شود. در فولاد کروم-نیکل دار و فولاد منگنز دار سبب ریزدانه سازی می شود. و باعث بهبود قابلیت جوشکاری می شود. و نقطه تسلیم و استحکام نهایی را بالا می برد. با ازدیاد درصد مولیبدن جوش پذیری کاهش می یابد. و سازنده مسلم فاز کاربید است. و در فولادهای تندبر خواص برشکاری را بهبود می بخشد. مولیبدن مقاومت خوردگی را بالا می برد. سختی پذیری را افزایش می دهد. در حدود 0.5- 1.5% مولیبدن به فولادهای آلیاژی اضافه می شود.

 

تا استحکام و مقاومت خزشی آنها در دماهای بالا حفظ شود. فولادهای زنگ نزن از 0.5 تا 4.0% مولیبدن دارند. فولادهای زنگ نزن آستنیتی برای مقاومت خوردگی بیشتر در محیط های خورنده حاوی مولیبدن مناسب هستند. همچنین، مقاومت در برابر پوسته شدن را می کاهد. عنصر مولیبدن باعث بهبود چقرمگی در فولادهای کربنی ساده با استحکام بالا می شود. و بنابراین در محدوده دمایی قابل استفاده، استحکام و سختی را افزایش می دهد.

 

در مقایسه با فولادهای کربنی ساده، فولادهای مولیبدن دار خواص الاستیک و استحکام ضربه ای بهتری دارند. با افزودن مولیبدن به فولادهای کم کربنی و مس دار نرخ خوردگی اتمسفری کاسته می شود. با حضور این عنصر، گرافیت زدایی در دماهای بالا کند می شود. مولیبدن، نیتریدهای بسیار مقاوم در برابر سایش در فولاد تشکیل می دهد و بنابراین در فولادهای ابزار نیتریده شونده استفاده می شود.

تأثیر عناصر آلیاژی

10- نیتروژن (N)

این عنصر به دو صورت ظهور می کند

1- بصورت یک عنصر مخرب که به دلیل کاهش چقرمگی در خلال فرآیند ته نشینی، رسوبی است. که موجب ایجاد حساسیت در برابر پیری و شکنندگی (تغییر شکل در درجه حرارت 300-350 درجه سانتی گراد) می شود. و امکان ایجاد تنش در ترکهای درون بلوری فولادهای غیر آلیاژی و کم آلیاژ را فراهم می سازد.

2- بصورت عنصری آلیاژی دامنه فاز گاما را افزایش می دهد. و ساختار آستنیتی را استحکام می بخشد. در فولادهای آستنیتی استحکام را افزایش می دهد و باعث افزایش نقطه تسلیم و خواص مکانیکی در گرما می شود.

11- آلومینیوم (All)

یکی از قوی ترین اکسیژن زداها و نیتروژن زداهاست و بر اساس نتایج به دست آمده. تأثیر بسیار زیادی برای مقابله با کرنش های ناشی از پیری دارد. در ترکیب با نیتروژن تشکیل نیترور می دهد. که باعث افزایش مقاومت در برابر پوست های شدن می شود. به همین دلیل به عناون عنصری آلیاژی برای مقاومت حرارتی فولادها به کار می رود.

12- نیکل (Ni)

این عنصر دو وظیفه مهم انجام می دهد

1- تشکیل و پایدار سازی ساختار آستنیتی، کاهش کار سختی، افزایش شکل پذیری، ایجاد خواص مکانیکی مخصوصاً در دماهای پایین.

2- بهبود خواص خوردگی مخصوصاً در محیط های احیا کننده و اسیدهای معدنی از طریق کمک به تشکیل لایه محافظ.

تأثیر عناصر آلیاژی

نیکل سختی پذیری فولاد را افزایش می دهد. و در حدود 0.25 تا 5 درصد در ترکیب فولاد وجود دارد. نیکل چقرمگی شکست فولاد بهمراه استحکام و سختی آن را افزایش می دهد. در مواقعی که در دماهای پایین به چقرمگی شکست بالا نیاز باشد. در صد آن تا 9 نیز می تواند باشد. و در فولادهای زنگ نزن آستنیتی 7 تا 35 درصد نیکل وجود دارد. در این فولادها برای خنثی کردن از فریت زایی کروم از نیکل بهره می گیرند.

13- سیلیسیم (Si)

سیلیسیم استحکام فولاد را افزایش می دهد. و سختی پذیری را زیاد می کند. همچنین مقاومت سایشی را افزایش می دهد. به علت افزایش استحکام تسلیم، عنصر اصلی در فولادهای فنر است. در مقادیر بالای سیلیس، سختی پذیری و استحکام فولاد افزایش می یابد. ولی این افزایش همراه با کاهش شکل پذیری و انرژی ضربه است. همچنین وجود این عنصر باعث افزایش مقاومت به پوسته شدن در دمای بالا می گردد. ضمناً در محیط های شیمیایی اکسید کننده قوی مانند اسید سولفوریک غلیظ و گرم نیز مقاومت خوردگی را افزایش می دهد.

تأثیر عناصر آلیاژی

14- گوگرد (S)

نقطه تسلیم و مقاومت در برابر کشش فولاد را تغییر نمی دهد. در فولادهای خوش تراش وجود گوگرد عامل مهمی است. در واقع، یکی از راه های افزایش قابلیت ماشینکاری، اضافه کردن گوگرد به ترکیب فولاد است. وقتی ابزار برش روی سطح قطعه کار می کنند. به علت وجود سولفاتت منگنز طول پلیسه ها کوتاه تر می شوند. و نقش روان کار را نیز ایفا می کنند. و در نتیجه صافی سطح بیشتر می شود.

15- فسفر (P)

فسفر خاصیت ماشینکاری، براده برداری، شکنندگی در حالت سرد و استحکام در حالت گرم را افزایش داده. و مقاومت در برابر ضربه را کاهش می دهد.

16- تنگستن (W)

تنگستن کاربرد زیادی در تولید فولاد ابزار داشته و اخیراً در تولید فولادهای پر آلیاژ مقاوم در برابر حرارت نیز استفاده می شوند. سختی پذیری را افزایش می دهد و از افت سختی در دماهای بالا که امری رایج در نوک ابزار است جلوگیری می کند.

در تولید فولادهای ابزار بالأخص فولادهای ابزار تندبر، یکی از عناصر اصلی تنگستن است. در فولادهای تندبر زمینه ای ایجاد می کند که در حین تمپر نرم نمی شود. و کاربید بسیار سخت و مقاوم به سایش می باشند.

17- وانادیوم (V)

با افزودن وانادیم به فولادهای ابزار و آلیاژی سختی پذیری آنها افزایش می یابد. وانادیم به عنوان عنصر آلیاژی در فولادهای کربنی میکروآلیاژی استفاده می شود. و تنها به مقدار کمی کافی است. تاافزایش قابل توجهی در استحکام فولاد به دست آید. وانادیم از درشت شدن دانه های آستنیت جلوگیری می کند. وانادیم، مقاومت به سایش و حفظ دندانه های تیز و استحکام در دماهای بالا را افزایش می دهد. همچنین بخاطر ریز کردن دانه های آستنیتت، قابلیت جوشکاری را بهبود می بخشد.

18- تیتانیوم (Ti)

در فولادهای ضد زنگ نیز برای از بین بردن اثر مخرب کاربید کروم مورد کاربرد قرار می گیرد.

10-نیوبیم (Nb)

در فولادهای ضد زنگ اثری مشابه تیتانیوم را داشته و به تنهایی و یا به همراه تیتانیوم مورد استفاده قرار می گیرد. و در فولادهای آستنیتی، برای بهبود مقاومت خوردگی بین دانه ای و افزایش خواص مکانیکی در دماهای بالا استفاده می شود. در فولادهای مارتنزیتی، نیوبیوم سختی را کم کرده و مقاومت به تمپر را افزایش می دهد. مقدار نیوبیوم مورد نیاز در فولادهای کربنی و کم آلیاژی کم بوده و در حدود 0.05% نیوبیوم. افزایش قابل توجهی در استحکام فولاد را در پی دارد.

20- قلع (Sn)

نقطه تسلیم و مقاومت در برابر کشش فولاد را تغییر نمی دهد. ولی در نورد سرد مشکل زا می باشد. زیرا افزایش این عنصر در فولاد باعث ایجاد ترکیباتی می شود که دمای ذوب آنها پایین می باشد.

21- سرب (Pb)

باعث کم شدن خاصیت نورد در فولاد می شود. کیفیت سطحی فولاد را کم می کند. به دلیل افزایش خاصیت شکل گیری فولاد، در فولادهای اتومات بیشتر مورد استفاده می شود.

 

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶

ارتباط با ما در شبکه های اجتماعی

https://t.me/foolad_paytakht تلگرام

https://www.instagram.com/folad_paytakht اینستاگرام

https://www.instagram.com/foolad_paytakht.ir اینستاگرام

 


:: برچسب‌ها: تأثیر عناصر آلیاژی روی فولاد , فولاد , فولاد آلیاژی , تسمه فولادی , ورق فولادی , فولاد سردکار , فولاد گرمکار , مولیبدن (Mo) , بورس فولاد ,



بازدید : 184
نویسنده : جواد دلاکان

چدن ها (Cast Irons) خانواده ای از آلیاژهای آهنی هستند. که از آهن، کربن (از 2.11% تا تقریباً 4.5%) و سیلیسیم (تا 0.5 تا 3.0%) تشکیل می شوند.

چدن - Cast Irons-آلیاژ آهنی-چدن خاکستری -چدن داکتیل-چدن مالیبل-چدن سفید-تولید چدن

چدن ها معمولاً حاوی 2.0% تا 4.0% کربن، 0.5 تا 3.0% سیلیسیم. کمتر از 1.0% منگنز و کمتر از 0.2% گوگرد هستند. عنصر سیلیسیم باعث ایجاد چندین اثر متالورژی در این آلیاژ می شود. سیلیسیم با توریج تشکیل یک اکسید سطحی کاملاً چسبیده. مقاومت در برابر اکسیداسیون و خوردگی چدن ها را افزایش می دهد. به همین دلیل، چدن ها به طور کلی مقاومت در برابر خوردگی بالاتری از اکثر فولادها دارند.

چدن ها، به استثنا نوع داکتیل، تا حدودی شکننده هستند. و به دلیل داشتن نقطه ذوب پایین، سیالیت بالا، قابلیت ریخته گری آسان، قابلیت ماشین کاری بالا. تغییر شکل ناپذیری و مقاومت به سایش بالا، به مواد مهندسی با دامنه وسیعی از کاربردها تبدیل شده اند. و در تولید انواع لوله ها، ماشین آلات، قطعات مورد استفاده در صنعت خودروسازی. مانند سرسیلندر، بلوک سیلندر و جعبه دنده به کار می روند. چدن ها همچنین در برابر تخریب ناشی از اکسایش و زنگ زدگی مقاومت بالایی دارند.

 

وجه تمایز چدن ها و فولادها، درصد کربن موجود در آنهاست. به نحوی که آلیاژ آهن حاوی تا 2 درصد کربن را فولاد و آلیاژ آهن. حاوی 2 الی 6.57 درصد کربن را چدن می نامند. کربن موجود در چدن ها به صورت گرافیت در زمینه پراکنده است. و این در حالی است که کربن در فولاد به صورت ترکیب بین فلزی سمنتیت (Fe3C) ظاهر می شود. و به این دلیل خواص مکانیکی و فیزیکی و شیمیایی فولادها با چدن ها متفاوت است.

از آنجایی که سیلیسیم به طور جزئی جایگزین کربن می شود. (هر دو عنصر در خارجی ترین لایه الکترونی خود 4 الکترون والانس دارند). دیاگرام فازی سه گانه ترکیب سه تایی آهن – کربن – سیلیسیم را می توان. با یک نمودار دوفازی بسیار ساده تر جایگزین کرد. در صورتی که مقیاس وزن – درصد – کربن با یک کربن معادل جایگزین شود. برای محاسبه این کربن معادل چندین فرمول وجود دارد. اما ساده ترین آنها درصد وزنی کربن به اضافه یک سوم درصد وزنی سیلیسیم است.

کربن معادل (CE) = درصد وزن کربن +یک سوم درصد وزنی سیلیسیم

با استفاده از کربن معادل، از نمودار آهن – کربن دو-جزئی. می توان برای تعیین نقاط ذوب و محاسبه ریزساختارهای آلیاژهای سه جزئی آهن – کربن – سیلیسیم استفاده کرد. سیلیسیم همچنین باعث افزایش شکل گیری گرافیت به عنوان فاز پر – کربن. به جای شکل گیری ترکیب بین فلزی سمنتیت (Fe3C) می شود. در نتیجه واکنش یوتکتیک دو احتمال متمایز خواهد داشت.

 

در نتیجه ریزساختار نهایی چدن، یا حاوی ترکیب بین فلزی غنی از کربن Fe3C خواهد بود. یا حاوی کربن خالص در شکل گرافیت خواهد بود. رخ دادن هر کدام از این حالت ها بستگی به ترکیب شیمیایی فلز و چندین متغیر فرآیند دیگر دارد. از بین این دو، گرافیت فاز پایدارتری است و ساختار تعادلی واقعی است. تشکیل آن با خنک کاری آهسته، درصد کربن و سیلیسیم بالا. جداره ها و مقاطع ضخیم و سنگین، روش های تلقیح، و وجود گوگرد، فسفر، آلومینیوم. منیزیم، آنتیموان، قلع، مس، نیکل، و کبالت تقویت می شود. از طرف دیگر تشکیل سمنتیت (Fe3C) با خنک کاری سریع، درصد کربن و سیلیسیم پایین، مقاطع نازک. و افزودن عناصر آلیاژی تیتانیم، وانادیم، زیرکونیم، کروم، منگنز و مولیبدن تقویت می شود.

تولید چُدن

چدن از طریق ذوب مجدد سنگ آهن به همراه آهن و فولاد قراضه بدست می آید. و با طی مراحلی برای حذف عناصر ناخواسته مانند فسفر و گوگرد همراه است. بسته به نوع کاربرد، میزان کربن و سیلیسیم تا حد مطلوب (به ترتیب 2 تا 3.5 و 1 تا 3 درصد وزنی) کاهش داده می شوند. سایر عناصر نیز حین ریخته گری و قبل از شکل گیری نهایی، به مذاب افزوده می شوند. چدن به جز موارد خاص که در کوره بلند موسوم به کوره کوپل ذوب می شود. عمدتاً در کوره های القایی الکتریکی تولید می گردد. پس از تکمیل ذوب، مذاب به کوره نگهدارنده یا قالب ریخته می شود.

طبقه بندی چُدن ها

چُدن ها معمولاً براساس ریخت شناسی انجماد آنها از دمای یوتکتیک نامگذاری می شوند. اولین طبقه بندی انجام شده برای چدن ها در گذشته براساس رنگ سطح مقطع شکست آنها انجام گرفت. بر این اساس چدن ها به دو دسته کلی تقسیم شدند.

  • چدن سفید: از آنجا که در این چدن ها، شکست امتداد صفحات کاربید آهن رخ می دهد. سطح مقطع شکست کریستالی آنها سفید است.
  • چدن خاکستری: در این چدن ها، شکست در امتدد صفحات گرافیت رخ می دهد. به همین دلیل سطح مقطع شکست کریستالی آنها خاکستری است.

 

با ابداع متالوگرافی و با افزایش دانش در مورد چدن ها. طبقه بندی های دیگری بر اساس ساختار کریستالی آنها امکان پذیر شد.

براساس شکل گرافیت: گرافیت لایه ای (FG)، گرافیت کروی (SG). گرافیت فشرده یا کرمی شکل (CG)، گرافیت آبدیده (TG). ساختار گرافیت آبدیده یا تمپر گرافیت از طریق یک فرآیند حالت – جامد ایجاد می شود. که به آن مالیبل سازی (Malleabilization) گفته می شود.

  • براساس ماتریس: فریتی،پرلیتی ،آستنیتی ، مارتنزیتی،باینیتی (آستمپر شده)
چدن - Cast Irons-آلیاژ آهنی-چدن خاکستری -چدن داکتیل-چدن مالیبل-چدن سفید-تولید چدن

چُدن خاکستری

چُدن خاکستری ریزساختار گرافیتی خاصی دارد که باعث می شود مقطع شکست آن به رنگ خاکستری باشد. در این نوع چدن ها تمامی یا قسمت اعظم کربن به صورت آزاد (گرافیت) رسوب می کند. از نظر وزنی رایج ترین نوع چُدن و پرکاربردترین ماده ریخته گری محسوب می شود. چُدن خاکستری عمدتاً حاوی 2.5 تا 4 درصد کربن، 1 تا 3 درصد سیلیسیم و مابقی آهن است. این نوع چُدن استحکام کششی و مقاومت به شوک کمتری نسبت به فولاد دارد. اما از نظر استحکام فشاری با فولاد کربنی کم و میان کربن قابل مقایسه است.

چُدن داکتیل

چُدن داکتیل یا چدن نشکن که در گذشته چدن نودولار یا گرافیت به شکل کره هایی کوچک می باشد. در چُدن داکتیل، مانند چُدن خاکستری، گرافیت یوتکتیک در حین فرآیند انجماد از آهن مذاب جدا می شود. اما با اضافه کردن مواد افزودنی خاص به مذاب قبل از ریخته گری. گرافیت به شکل کره هایی رشد می کند. و شباهتی به گرافیت های شکل گرفته در چُدن خاکستری ندارد. چدن حاوی گرافیت کره ای بسیار قوی تر از چدن خاکستری یا چدن مالیبل است. و قابلیت کشیده شدن و تغییر طول بیشتری قبل از شکست ناگهانی نسبت به آنها دارد. می توان این ماده را به عنوان یک ماده کامپوزیت طبیعی در نظر گرفت. که در آن گرافیت کروی خواص منحصر به فردی به چدن داکتیل داده است.

 

استحکام و چقرمگی نسبتاً زیاد چدن داکتیل در بسیاری از کاربردهای ساختاری. نسبت به چدن خاکستری یا چُدن مالیبل، به آن برتری می بخشد. همچنین از آنجایی که چدن داکتیل برای تولید کلوخه های گرافیت (graphite nodules) نیازی به عملیات حرارتی ندارد (در حالیکه چدن مالیبل برای تولید کلوخه های تمپر – کربن به عملیات حرارتی نیاز دارد). می تواند با چُدن مالیبل رقابت کند. هرچند برای تولید این کلوخه ها به یک عملیات تلقیح نیاز است. بازده قالب (Mold yield) (یعنی نسبت وزن قطعه ریختگی به وزن قالب). در چدن داکتیل نسبت به چُدن مالیبل معمولاً بالاتر است. چدن داکتیل را می توان با استانداردهای اشعه ایکس تولید کرد. زیرا تخلخل در مرکز حرارتی باقی می ماند. اما چدن مالیبل نمی تواند تخلخل را تحمل کند. زیرا حفره ها به سطح نقاط گرم مانند فیلت ها مهاجرت می کنند. و به صورت ترک ظاهر می شوند.

 

شکل گیری گرافیت در حین انجماد با یک افزایش حجم همراه است. که می تواند کاهش حجم ناشی از تغییر فاز مایع – به – جامد را خنثی کند. قطعات ریخته گری چدن داکتیل معمولاً در هنگام ریخته گری به رایزرهای بسیار کمی نیاز دارند. (رایزرها مخازنی از ماده مذاب در داخل قالب هستند. که در هنگام انقباض قطعه در اثر انجماد، آن را تغذیه می کنند تا عیوب ناشی از انقباض ایجاد نگردد). چدن های خاکستری معمولاً نیازی به رایزر ندارند. در عوض، فولادها و چدن مالیبل در هنگام ریخته گری به رایزربندی فراوان و سنگینی نیاز دارند.

از مزایای چدن داکتیل میتوان به راحتی ریخته گری و ماشینکاری. و نسب استحکام به وزن فوق العاده بالای آن اشاره کرد. همچنین هزینه ریخته گری چدن داکتیل از فولاد بسیار کمتر است.

چُدن سفید

سطع مقطع شکست چدن سفید به دلیل وجود فاز سمنتیت، سفید رنگ است. به دلیل درصد کربن کمتر و خنک کاری سریع تر، کربن در چُدن های سفید. و جای گرافیت، به شکل سمنتیت (Fe3C) که یک فاز شبه پایدار است، رسوب می کند. سمنتیت رسوب کرده ا مذاب به شکل ذرات بزرگی در فاز یوتکتیک تشکیل می شود. فاز دیگر این نوع چُدن آستنیت است. که طی فرآیند انجماد مارتنزیت تبدیل می شود. این کاربیدهای یوتکتیک درشت تر از آن هستند. که سخت گردانی رسوبی ایجاد کنند (مانند برخی فولادها که رسوب سمنتیت. با ممانعت از حرکت نابجایی ها در فاز زمینه فریت، از تغییر شکل پلاستیک جلوگیری می کند).

 

اما تا حدودی به دلیل سختی خود ذرات سمنتیت که بخشی از حجم ماده را اشغال می کنند، سختی کل افزایش می یابد به طوری که سختی چدن سفید بر اساس قانون مخلوط ها برآورد می شود. در هر صورت سمنتیت ها سختی را افزایش و چقرمگی را کاهش می دهند. از انجا که کاربید بخش بزرگی از ماده را می گیرد. چدن سفید را می توان نوعی سرمت به حساب آورد. چدن سفید برای بسیاری مصارف بیش از حد ترد است. ولی به لطف سختی خوب، مقاومت به سایش بالا و قیمت پایین. در ساخت قطعاتی چون سطوح در معرض سایش (مانند پروانه توربین). در سیستم آهن – کربن پایدار، تمامی کربن به صورت گرافیت ظاهر می شود.

چُدن مالیبل

چُدن مالیبل یا چُدن چکش خوار، ذاتاً از نوع چُدن های هیپو یوتکتیکی کم آلیاژی یا غیر آلیاژی هستند. جهت ایجاد گرافیت های کروی فشرده و حصول خواص مکانیکی. مانند استحکام و چکش خواری، عملیات آنیل کردن انجام می گیرد. پس از ریخته گری، کربن این چدن ها به شکل ترکیبی (ترکیب با آهن) بوده. و قطعات به صورت چُدن سفید درآمده که با فرآیند حرارتی بخصوصی به چُدن مالیبل تبدیل می شوند.

کربن این نوع چُدن بیشتر به صورت کره هایی (کلوخه) از گرافیت و با اشکال نامنظم می باشد. چُدن چکش خوار ابتدا به صورت چُدن سفید و با ترکیب شیمیایی مناسب ریخته می شود. سپس به هنگام آنیل از سمنتیت چُدن سفید، گرافیت جوانه زده و به صورت کروی رشد می کند. با تغییر دادن عملیات آنیل، می توان چُدن چکش خوار با خواص مکانیکی مختلف به دست آورد. از آنجا که ابتدا برای تولید چُدن سفید انجماد سریعی لازم است لذا ضخامت قطعات چُدن چکش خوار محدود است.

پس از اتمام مرحله اول آنیل، ساختار دارای کربن برفکی در زمینه آستنیت اشباع شده از کربن بوده. و در مرحله دوم می توان با تنظیم سرعت سرد کردن ساختار را از فریت تا پرلیت تغییر داد. شکل گرافیت در چُدن مالیبل (چکش خوار) کروی نبوده و به شکل برفکی می باشد.

متالورژی چُدن ها

هدف متالورژیست طراحی فرآیندی برای تولید چُدن با ساختاری است که خواص مکانیکی مورد انتظار را به همراه داشته باشد. مهم ترین عواملی که بر روی ساختار چُدن ها تأثیر می گذارد موارد زیر است.

  • ترکیب شیمیایی
  • نرخ خنک کاری
  • عملیات بر روی مذاب
  • عملیات حرارتی

معماری چُدنی

تاریخچه

نوعی از معماری است که چُدن در آن نقش اصلی ایفا می کند. این سبک، سبکی برجسته در انقلاب صنعتی بود. یعنی زمانی که چدن نسبتاً ارزان بود و فولاد هنوز فراگیر نشده بود. در اوایل عصر انقلاب صنعتی از چدن در ساخت کارخانه ها اغلب استفاده می شد. تا حدودی به خاطر فکر اشتباهی که می کردند و آن این بود که این ساختارها ضد آتش اند. چون به قدر کافی برای تحمل ابزار آلات سنگین مقاوم است. اما در مقابل آتش که معمولاً در این کارخانه اتفاق می افتاد آسیب پذیر بود.

 

چُدن همچنین بسیار در ساخت پل برای سیستم های جدید راه آهن. که اغلب نتایج وحشت ناکی داشت به کار می رفت. بعدها هم در خط ریل های زیر پل استفاده شد. که خطرات بسیاری داشت و جان دچندین نفر را گرفت. معماری چُدن برای چندین قرن استفاده می شد. به خصوص در معماری پیش از مدرن در قرن 18 انگلستان برای اولین بار. روش های تولید جدید چدن به صورت فراوان و ارزان در ساختمان های بزرگ را به کار برد. یکی از اولین و مهم ترین پل های آهنی در شوپ شایر احداث شد. که تقریباً تمام ساختار آن با چدن ساخته و تنظیم شده بود. کیفیت چدن استفاده شده در پل زیاد بالا نبود و نزدیک به 80 ترک در ساختار آن مشاهده شده است.

موارد استفاده

برای ساخت پل، لوله ها، درپوش چاه های خیابان، ماشین آلات و بسیاری چیزهای دیگر. تا زمان جایگزین شده فولاد استفاده می شد. شکل توسعه یافته اش به عنوان خرپای سقف، شاغول کردن. خطوط گازی و هم چنین پنجره های دکوراتیو استفاده می شده است.

معایت و مزایا

چدن دارای مزیت ها و معایبی در معماری است. در فشرده سازی قوی و در کشش و خمش ضعیف است. مقاومت و سختی آن مخصوصاً در حرارت بالا (هنگام آتش سوزی)بسیار پایین می آید.

شرکت خشکه و فولاد پایتخت (( مدیریت : جواد دلاکان )) صنعتگران عزیز، افتخار داریم. که سی سال تجربه گرانبهای خویش را در زمینه عرضه انواع ورق آلیاژی. و انواع فولاد آلیاژی برای خدمت رسانی به شما هموطنان کشور عزیزمان ایران ارائه می دهیم. پیشاپیش از اینکه شرکت خشکه و فولاد پایتخت را جهت خرید خود انتخاب می نمایید سپاسگزاریم.
ارتباط با ما:
۰۹۱۲۱۲۲۴۲۲۷
۰۹۳۷۱۹۰۱۸۰۷
تلفن: ۰۲۱۶۶۸۰۰۲۵۱
فکس: ۶۶۸۰۰۵۴۶


:: برچسب‌ها: چدن , CAST IRONS,آلیاژ آهنی,چدن خاکستری ,چدن داکتیل,چدن مالیبل,چدن سفید,تولید چدن ,